Home
Class 12
MATHS
If S(n) = sum(r=1)^(n) (r )/(1.3.5.7"……"...

If `S_(n) = sum_(r=1)^(n) (r )/(1.3.5.7"……"(2r+1))`, then

A

`S_(n) = 1/2 [1-(1)/(1.3.5"……."(2n+1))]`

B

`S_(oo) = 1/2`

C

`1/4 [1+(1)/(1.3.5"……"(2n-1))]`

D

`S_(oo) = 1/4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given expression: \[ S_n = \sum_{r=1}^{n} \frac{r}{1 \cdot 3 \cdot 5 \cdots (2r + 1)} \] ### Step 1: Understanding the Denominator The denominator \(1 \cdot 3 \cdot 5 \cdots (2r + 1)\) can be expressed in terms of factorials. It represents the product of the first \(r\) odd numbers. This can be rewritten using the double factorial notation as: \[ (2r + 1)!! = \frac{(2r + 1)!}{2^r \cdot r!} \] ### Step 2: Rewrite the Sum Using the double factorial, we can rewrite \(S_n\) as: \[ S_n = \sum_{r=1}^{n} \frac{r \cdot 2^r \cdot r!}{(2r + 1)!} \] ### Step 3: Simplifying the Expression We can simplify the term \(\frac{r \cdot 2^r \cdot r!}{(2r + 1)!}\): \[ \frac{r \cdot 2^r \cdot r!}{(2r + 1)!} = \frac{r \cdot 2^r}{(2r + 1)(2r)(2r - 1) \cdots (2)} = \frac{2^r}{(2r + 1)!!} \] ### Step 4: Evaluating the Limit as \(n \to \infty\) To find \(S_\infty\), we take the limit as \(n\) approaches infinity: \[ S_\infty = \lim_{n \to \infty} S_n \] ### Step 5: Analyzing the Options We have the following options: 1. \(S_n = \frac{1}{2} \left(1 - \frac{1}{1 \cdot 3 \cdots (2n + 1)}\right)\) 2. \(S_\infty = \frac{1}{2}\) 3. \(S_n = \frac{1}{4} \left(1 + \frac{1}{1 \cdot 3 \cdots (2n - 1)}\right)\) 4. \(S_\infty = \frac{1}{4}\) ### Step 6: Checking the Options - For option 1, substituting \(n = 1\): \[ S_1 = \frac{1}{2} \left(1 - \frac{1}{3}\right) = \frac{1}{2} \cdot \frac{2}{3} = \frac{1}{3} \] - For option 2, \(S_\infty = \frac{1}{2}\) is valid. - For option 3, substituting \(n = 1\): \[ S_1 = \frac{1}{4} \left(1 + 1\right) = \frac{1}{4} \cdot 2 = \frac{1}{2} \] - For option 4, \(S_\infty = \frac{1}{4}\) is not valid. ### Conclusion The correct options are: 1. \(S_n = \frac{1}{2} \left(1 - \frac{1}{1 \cdot 3 \cdots (2n + 1)}\right)\) 2. \(S_\infty = \frac{1}{2}\)
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise High Level Problem|26 Videos
  • EQUATIONS

    RESONANCE ENGLISH|Exercise EXERCISE-2 (PART-II: PREVIOUSLY ASKED QUESTION OF RMO) |5 Videos

Similar Questions

Explore conceptually related problems

T_(n) =sum _( r =2n )^(3n-1) (r)/(r ^(2) +n ^(2)), S_(n) = sum _(r =2n+1)^(3n) (r )/(r ^(2) + n ^(2)), then AA n in {1,2,3...}:

If S_(n)=sum_(r=1)^(n) a_(r)=(1)/(6)n(2n^(2)+9n+13) , then sum_(r=1)^(n)sqrt(a_(r)) equals

If S_(r)= sum_(r=1)^(n)T_(1)=n(n+1)(n+2)(n+3) then sum_(r=1)^(10) 1/(T_(r)) is equal to

If (4x^(2) + 1)^(n) = sum_(r=0)^(n)a_(r)(1+x^(2))^(n-r)x^(2r) , then the value of sum_(r=0)^(n)a_(r) is

Let T_(n) = sum_(r=1)^(n) (n)/(r^(2)-2r.n+2n^(2)), S_(n) = sum_(r=0)^(n)(n)/(r^(2)-2r.n+2n^(2)) then

If s_(n)=sum_(r=0)^(n)(1)/(.^(n)C_(r))and t_(n)=sum_(r=0)^(n)(r)/(.^(n)C_(r)) , then (t_(n))/(s_(n)) is equal to

If s_(n)=sum_(r=0)^(n)(1)/(.^(n)C_(r))and t_(n)=sum_(r=0)^(n)(r)/(.^(n)C_(r)) , then (t_(n))/(s_(n)) is equal to

sum_(r=1)^(n) (-1)^(r-1) ""^nC_r(a - r) =

If f (n) = sum_(s=1)^n sum_(r=s)^n "^nC_r "^rC_s , then f(3) =

If S_n=sum_(r=1)^n(1+2+2^2+ .......+2^r)/(2^r), then S_n is equal to (a) 2^n n-1 (b) 1-1/(2^n) (c) n -1+1/(2^n) (d) 2^n-1

RESONANCE ENGLISH-DPP-QUESTION
  1. The vertices of a triangle are A(x1, x1tantheta1),B(x2, x2tantheta2)a ...

    Text Solution

    |

  2. The sides of a triangle are the straight lines x+y=1,7y=x , and sqrt(3...

    Text Solution

    |

  3. If S(n) = sum(r=1)^(n) (r )/(1.3.5.7"……"(2r+1)), then

    Text Solution

    |

  4. If (3sqrt(3)+5)^n=p+f. where p is an integer and f is a proper fractio...

    Text Solution

    |

  5. A is a set containing n elements . A subet P of A is chosen at rand...

    Text Solution

    |

  6. A is a set containing n elements. A subset P of A is chosen. The set A...

    Text Solution

    |

  7. For natural numbers m, n if (1-y)^(m)(1+y)^(n) = 1+a(1)y+a(2)y^(2) + "...

    Text Solution

    |

  8. If s(n)=sum(r=0)^(n)(1)/(""^(n)C(r)) and t(n)=sum(r=0)^(n)(r)/(""^(n)C...

    Text Solution

    |

  9. If the equation x^(2) + ax + b = 0 has distinct real roots and x^(2...

    Text Solution

    |

  10. Statement - 1 sum(r=0)^(n) (r + 1) ""^(n)C(r) = (n+2)*2^(n-1) Stat...

    Text Solution

    |

  11. The number of ways in which four different letters can be put in their...

    Text Solution

    |

  12. Orthocentre of an acute triangle A B C is at the orogin and its circum...

    Text Solution

    |

  13. There are 720 permutations of the digits 1, 2, 3, ,4 ,5, 6. Suppose th...

    Text Solution

    |

  14. There are 10 questions, each question is either True or False. Number ...

    Text Solution

    |

  15. 5 Indian and 5 Russian couples meet at a party and shake hands. The ...

    Text Solution

    |

  16. The coefficient of x^4 in ((1+x)/(1-x))^2,|x|<1, is

    Text Solution

    |

  17. In the expansion of (x +y + z)^25

    Text Solution

    |

  18. If S (1), S (2) , S (3)……., S (2n) are the sums of infinite geometric ...

    Text Solution

    |

  19. The number of ways in which 8 distinguishable apples can be distribute...

    Text Solution

    |

  20. Distinct 3 digit numbers are formed using only the digits 1,2,3,4 wit...

    Text Solution

    |