Home
Class 12
MATHS
All the natural numbers, sum of whose di...

All the natural numbers, sum of whose digits is 8 are arranged in ascending order then the `170^(th)` number in the list does not contain the digit

A

2

B

3

C

4

D

5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the `170th` number in the list of natural numbers whose digits sum up to `8`, we will follow these steps: ### Step 1: Count the numbers with digit sum equal to 8 We need to find how many natural numbers exist where the sum of the digits equals `8`. We can use the "stars and bars" theorem to count these combinations. 1. **One-digit numbers**: The only one-digit number is `8`. - Count = 1 2. **Two-digit numbers**: We can express this as `x1 + x2 = 8`, where `x1` and `x2` are the digits of the two-digit number (with `x1` not being `0`). - The equation becomes `x1 + x2 = 8` with `x1 >= 1` and `x2 >= 0`. - By substituting `y1 = x1 - 1`, we have `y1 + x2 = 7` where `y1 >= 0` and `x2 >= 0`. - The number of solutions is given by `C(7 + 1, 1) = C(8, 1) = 8`. - Count = 8 3. **Three-digit numbers**: We can express this as `x1 + x2 + x3 = 8`, where `x1 >= 1`. - By substituting `y1 = x1 - 1`, we have `y1 + x2 + x3 = 7`. - The number of solutions is given by `C(7 + 2, 2) = C(9, 2) = 36`. - Count = 36 4. **Four-digit numbers**: We express this as `x1 + x2 + x3 + x4 = 8`, where `x1 >= 1`. - By substituting `y1 = x1 - 1`, we have `y1 + x2 + x3 + x4 = 7`. - The number of solutions is given by `C(7 + 3, 3) = C(10, 3) = 120`. - Count = 120 5. **Five-digit numbers**: We express this as `x1 + x2 + x3 + x4 + x5 = 8`, where `x1 >= 1`. - By substituting `y1 = x1 - 1`, we have `y1 + x2 + x3 + x4 + x5 = 7`. - The number of solutions is given by `C(7 + 4, 4) = C(11, 4) = 330`. - Count = 330 ### Step 2: Total Count Now we sum all the counts: - 1 (one-digit) + 8 (two-digit) + 36 (three-digit) + 120 (four-digit) + 330 (five-digit) = 495. ### Step 3: Finding the 170th number Since the total count of numbers with digit sum `8` is `495`, we can find the 170th number: - The first `1 + 8 + 36 + 120 = 165` numbers are all the one-digit, two-digit, three-digit, and four-digit numbers. - Therefore, the `170th` number must be a five-digit number. ### Step 4: Constructing the five-digit numbers We need to find the first few five-digit numbers whose digits sum to `8`. The smallest five-digit number is `10000`, and we can incrementally find the combinations: 1. **First five-digit number**: `10007` 2. **Next**: `10016` 3. **Next**: `10025` 4. **Next**: `10034` 5. **Next**: `10043` 6. **Next**: `10052` 7. **Next**: `10061` 8. **Next**: `10070` 9. **Next**: `10106` 10. **Next**: `10115` 11. **Next**: `10124` 12. **Next**: `10133` 13. **Next**: `10142` 14. **Next**: `10151` 15. **Next**: `10205` 16. **Next**: `10214` 17. **Next**: `10223` 18. **Next**: `10232` 19. **Next**: `10304` 20. **Next**: `10313` 21. **Next**: `10322` 22. **Next**: `10403` 23. **Next**: `10412` 24. **Next**: `10502` 25. **Next**: `11007` 26. **Next**: `11016` 27. **Next**: `11025` 28. **Next**: `11034` 29. **Next**: `11043` 30. **Next**: `11052` 31. **Next**: `11061` 32. **Next**: `11070` 33. **Next**: `11106` 34. **Next**: `11115` 35. **Next**: `11124` 36. **Next**: `11133` 37. **Next**: `11142` 38. **Next**: `11151` 39. **Next**: `11205` 40. **Next**: `11214` 41. **Next**: `11223` 42. **Next**: `11232` 43. **Next**: `11304` 44. **Next**: `11313` 45. **Next**: `11322` 46. **Next**: `11403` 47. **Next**: `11412` 48. **Next**: `11502` 49. **Next**: `12005` 50. **Next**: `12014` 51. **Next**: `12023` 52. **Next**: `12032` 53. **Next**: `12104` 54. **Next**: `12113` 55. **Next**: `12122` 56. **Next**: `12203` 57. **Next**: `12212` 58. **Next**: `12302` 59. **Next**: `13004` 60. **Next**: `13013` 61. **Next**: `13022` 62. **Next**: `13103` 63. **Next**: `13112` 64. **Next**: `13202` 65. **Next**: `14003` 66. **Next**: `14012` 67. **Next**: `14102` 68. **Next**: `15002` 69. **Next**: `20006` 70. **Next**: `20015` 71. **Next**: `20024` 72. **Next**: `20033` 73. **Next**: `20042` 74. **Next**: `20051` 75. **Next**: `20105` 76. **Next**: `20114` 77. **Next**: `20123` 78. **Next**: `20204` 79. **Next**: `20213` 80. **Next**: `20303` 81. **Next**: `20312` 82. **Next**: `20402` 83. **Next**: `21005` 84. **Next**: `21014` 85. **Next**: `21023` 86. **Next**: `21032` 87. **Next**: `21104` 88. **Next**: `21113` 89. **Next**: `21122` 90. **Next**: `21203` 91. **Next**: `21212` 92. **Next**: `21302` 93. **Next**: `22004` 94. **Next**: `22013` 95. **Next**: `22022` 96. **Next**: `22103` 97. **Next**: `22112` 98. **Next**: `22202` 99. **Next**: `23003` 100. **Next**: `23012` 101. **Next**: `23102` 102. **Next**: `24002` 103. **Next**: `30005` 104. **Next**: `30014` 105. **Next**: `30023` 106. **Next**: `30032` 107. **Next**: `30104` 108. **Next**: `30113` 109. **Next**: `30122` 110. **Next**: `30203` 111. **Next**: `30212` 112. **Next**: `30302` 113. **Next**: `31004` 114. **Next**: `31013` 115. **Next**: `31022` 116. **Next**: `31103` 117. **Next**: `31112` 118. **Next**: `31202` 119. **Next**: `32003` 120. **Next**: `32012` 121. **Next**: `32102` 122. **Next**: `33002` 123. **Next**: `40004` 124. **Next**: `40013` 125. **Next**: `40022` 126. **Next**: `40103` 127. **Next**: `40112` 128. **Next**: `40202` 129. **Next**: `41003` 130. **Next**: `41012` 131. **Next**: `41102` 132. **Next**: `42002` 133. **Next**: `50003` 134. **Next**: `50012` 135. **Next**: `50102` 136. **Next**: `51002` 137. **Next**: `60002` 138. **Next**: `70002` 139. **Next**: `80002` 140. **Next**: `90002` After counting, we find that the `170th` number in this sequence is `10043`. ### Step 5: Identify the digits in the number The number `10043` contains the digits `1`, `0`, `0`, `4`, and `3`. ### Conclusion The question asks which digit is not present in the `170th` number. The digits available in the options are `2`, `3`, `4`, and `5`. Among these, `2` and `5` are not present in `10043`. ### Final Answer The digits that do not appear in the `170th` number `10043` are `2` and `5`.
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise High Level Problem|26 Videos
  • EQUATIONS

    RESONANCE ENGLISH|Exercise EXERCISE-2 (PART-II: PREVIOUSLY ASKED QUESTION OF RMO) |5 Videos

Similar Questions

Explore conceptually related problems

All the five digit numbers in which each successive digit exceeds its predecessor are arranged in the increasing order of their magnitude. The 97^(th) number in the list does not contain the digit

The total number of 4 digit numbers in which the digit are in descending order, is

The number of numbers of 7 digits whose sum of digits is even, is

All the 7-digit numbers containing each of the digits 1,2,3,4,5,6,7 exactly once, and not divisible by 5, are arranged in increasing order. Find the 2000^(th) number in the list

In a data 10 numbers are arranged in ascending order. If the 8th entry is increased by 6 the median increases by

Consider the digits in set S=(1,2,3,4) . All four-digit number formed using digits in S are arranged ascending order. Which of the following is/are correct?

Find the number of all 6-digit natural numbers such that the sum of their digits is 10 and each of the digits 0,1,2,3 occurs at least once in them.

All the 7 digit numbers containing each of the digits 1,2,3,4, 5, 6,7 exactly once, and not divisible by5 are arranged in the increasing order. Find the (2004)^(th) number in this list.

All the 7 digit numbers containing each of the digits 1,2,3,4, 5, 6,7 exactly once, and not divisible by5 are arranged in the increasing order. Find the (2004)^(th) number in this list.

If m denotes the number of 5 digit numbers if each successive digits are in their descending order of magnitude and n is the corresponding figure, when the digits are in their ascending order of magnitude then (m-n) has the value (

RESONANCE ENGLISH-DPP-QUESTION
  1. Given that N = 2^(n)(2^(n+1) -1) and 2^(n+1) - 1 is a prime number, wh...

    Text Solution

    |

  2. If the sum of digits of the number N = 2000^11 -2011 is S, then

    Text Solution

    |

  3. All the natural numbers, sum of whose digits is 8 are arranged in asce...

    Text Solution

    |

  4. If the lines L1:2x-3y-6=0,L2: x+y-4=0 and L3: x+2 and tanA ,tanB and t...

    Text Solution

    |

  5. The area of a triangle is 3/2 square units. Two of its vertices are th...

    Text Solution

    |

  6. Find the sum of the series (2^2-1)(6^2-1)+(4^2-1)(8^2-1)+...+(100^2-1)...

    Text Solution

    |

  7. The number of integral solutions of the inequation x+y+z le 100, (x ge...

    Text Solution

    |

  8. Find number of othe ways in which word 'KOLAVARI' can be arranged, if ...

    Text Solution

    |

  9. Number of ways in which four different toys and five indistinguishable...

    Text Solution

    |

  10. We are required to form different words with the help of the letters o...

    Text Solution

    |

  11. If the lines a x+2y+1=0,b x+3y+1=0a n dc x+4y+1=0 are concurrent, then...

    Text Solution

    |

  12. If the point (1+cos theta, sin theta) lies between the region correspo...

    Text Solution

    |

  13. The line 2x+3y=12 meets the x-axis at A and y-axis at B. The line thro...

    Text Solution

    |

  14. Equation of straight line a x+b y+c=0 , where 3a+4b+c=0 , which is at ...

    Text Solution

    |

  15. If the straight lines joining the origin and the points of intersectio...

    Text Solution

    |

  16. Statement-1 :Perpendicular from origin O to the line joining the point...

    Text Solution

    |

  17. The point (11 ,10) divides the line segment joining the points (5,-2) ...

    Text Solution

    |

  18. The algebraic sum of the perpendicular distances from A(x1, y1), B(x2,...

    Text Solution

    |

  19. In a flower bed there are 23 rose plants in the first row, twenty o...

    Text Solution

    |

  20. A committee of 10 is to be formed from 8 teachers and 12 students of w...

    Text Solution

    |