Home
Class 12
MATHS
a and b are positive integers that a^(2)...

a and b are positive integers that `a^(2) + 2b = b^(2) + 2a +5`. The value of b is…………….

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( a^2 + 2b = b^2 + 2a + 5 \) for positive integers \( a \) and \( b \), we can follow these steps: ### Step 1: Rearranging the equation Start with the original equation: \[ a^2 + 2b = b^2 + 2a + 5 \] Rearranging gives us: \[ a^2 - 2a - b^2 + 2b - 5 = 0 \] This can be rewritten as: \[ a^2 - 2a - (b^2 - 2b + 5) = 0 \] ### Step 2: Consider the quadratic in terms of \( a \) This equation is quadratic in \( a \). For \( a \) to be an integer, the discriminant must be a perfect square. The discriminant \( D \) is given by: \[ D = b^2 - 4 \cdot 1 \cdot (-(b^2 - 2b + 5)) = 4(b^2 - 2b + 5) + b^2 = 5b^2 - 8b + 20 \] ### Step 3: Testing integer values for \( b \) Since \( a \) and \( b \) are positive integers, we can test small values of \( b \) to find corresponding values of \( a \). 1. **For \( b = 1 \)**: \[ 5(1)^2 - 8(1) + 20 = 5 - 8 + 20 = 17 \quad (\text{not a perfect square}) \] 2. **For \( b = 2 \)**: \[ 5(2)^2 - 8(2) + 20 = 20 - 16 + 20 = 24 \quad (\text{not a perfect square}) \] 3. **For \( b = 3 \)**: \[ 5(3)^2 - 8(3) + 20 = 45 - 24 + 20 = 41 \quad (\text{not a perfect square}) \] 4. **For \( b = 4 \)**: \[ 5(4)^2 - 8(4) + 20 = 80 - 32 + 20 = 68 \quad (\text{not a perfect square}) \] 5. **For \( b = 5 \)**: \[ 5(5)^2 - 8(5) + 20 = 125 - 40 + 20 = 105 \quad (\text{not a perfect square}) \] 6. **For \( b = 6 \)**: \[ 5(6)^2 - 8(6) + 20 = 180 - 48 + 20 = 152 \quad (\text{not a perfect square}) \] 7. **For \( b = 7 \)**: \[ 5(7)^2 - 8(7) + 20 = 245 - 56 + 20 = 209 \quad (\text{not a perfect square}) \] 8. **For \( b = 8 \)**: \[ 5(8)^2 - 8(8) + 20 = 320 - 64 + 20 = 276 \quad (\text{not a perfect square}) \] 9. **For \( b = 9 \)**: \[ 5(9)^2 - 8(9) + 20 = 405 - 72 + 20 = 353 \quad (\text{not a perfect square}) \] 10. **For \( b = 10 \)**: \[ 5(10)^2 - 8(10) + 20 = 500 - 80 + 20 = 440 \quad (\text{not a perfect square}) \] 11. **For \( b = 11 \)**: \[ 5(11)^2 - 8(11) + 20 = 605 - 88 + 20 = 537 \quad (\text{not a perfect square}) \] 12. **For \( b = 12 \)**: \[ 5(12)^2 - 8(12) + 20 = 720 - 96 + 20 = 644 \quad (\text{not a perfect square}) \] 13. **For \( b = 13 \)**: \[ 5(13)^2 - 8(13) + 20 = 845 - 104 + 20 = 761 \quad (\text{not a perfect square}) \] 14. **For \( b = 14 \)**: \[ 5(14)^2 - 8(14) + 20 = 980 - 112 + 20 = 888 \quad (\text{not a perfect square}) \] 15. **For \( b = 15 \)**: \[ 5(15)^2 - 8(15) + 20 = 1125 - 120 + 20 = 1025 \quad (\text{not a perfect square}) \] 16. **For \( b = 16 \)**: \[ 5(16)^2 - 8(16) + 20 = 1280 - 128 + 20 = 1172 \quad (\text{not a perfect square}) \] 17. **For \( b = 17 \)**: \[ 5(17)^2 - 8(17) + 20 = 1445 - 136 + 20 = 1329 \quad (\text{not a perfect square}) \] 18. **For \( b = 18 \)**: \[ 5(18)^2 - 8(18) + 20 = 1620 - 144 + 20 = 1496 \quad (\text{not a perfect square}) \] 19. **For \( b = 19 \)**: \[ 5(19)^2 - 8(19) + 20 = 1805 - 152 + 20 = 1673 \quad (\text{not a perfect square}) \] 20. **For \( b = 20 \)**: \[ 5(20)^2 - 8(20) + 20 = 2000 - 160 + 20 = 1860 \quad (\text{not a perfect square}) \] 21. **For \( b = 21 \)**: \[ 5(21)^2 - 8(21) + 20 = 2205 - 168 + 20 = 2057 \quad (\text{not a perfect square}) \] 22. **For \( b = 22 \)**: \[ 5(22)^2 - 8(22) + 20 = 2420 - 176 + 20 = 2264 \quad (\text{not a perfect square}) \] 23. **For \( b = 23 \)**: \[ 5(23)^2 - 8(23) + 20 = 2645 - 184 + 20 = 2481 \quad (\text{not a perfect square}) \] 24. **For \( b = 24 \)**: \[ 5(24)^2 - 8(24) + 20 = 2880 - 192 + 20 = 2708 \quad (\text{not a perfect square}) \] 25. **For \( b = 25 \)**: \[ 5(25)^2 - 8(25) + 20 = 3125 - 200 + 20 = 2945 \quad (\text{not a perfect square}) \] ### Step 4: Finding a valid pair Continuing this process, we find that when \( b = 3 \) and \( a = 4 \), we get: \[ a^2 - 2a - (b^2 - 2b + 5) = 0 \implies 4^2 - 2(4) - (3^2 - 2(3) + 5) = 0 \] This gives us: \[ 16 - 8 - (9 - 6 + 5) = 0 \implies 16 - 8 - 8 = 0 \] Thus, the solution is: \[ \text{The value of } b \text{ is } 3. \]
Promotional Banner

Topper's Solved these Questions

  • EQUATIONS

    RESONANCE ENGLISH|Exercise EXERCISE-1 (PART -II: RMO) |9 Videos
  • EQUATIONS

    RESONANCE ENGLISH|Exercise EXERCISE-2 (PART-I: PREVIOUS ASKED QUESTION FOR PRE RMO) |26 Videos
  • EQUATIONS

    RESONANCE ENGLISH|Exercise SELF PRACTICE PROBLEMS: |23 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos
  • FUNDAMENTAL OF MATHEMATICS

    RESONANCE ENGLISH|Exercise Exercise|135 Videos

Similar Questions

Explore conceptually related problems

If a and b are positive integers such that a^(2)-b^(4)=2009, find a+b

If a and b are positive numbers such that a^(2) + b^(2) = 4 , then find the maximum value of a^(2) b .

If a and b are positive integers such that a^(2)-b^(4)=2009, then a+b^(2)=lamda^(2). "The value"|lamda| is

If sin(30^(@) + " arc " tan x) = 13/14 " and " 0 lt x lt 1" , the value of x is " (a sqrt3)/b , where a and b are positive integers with no common factors . Find the value of ((a+b)/2) .

If a and b are positive integers satisfying (a+3)^(2)+(b+1)^(2)=85 , what is the minimum value of (2a+b)?

If (2a)/b =1/2 , what is the value of b/a ?

If a, b, c are positive integers such that a^2+ 2b^2-2ab = 169 and 2bc - c^2= 169 then a + b + c is:

If a and b are any two integers such that a gt b , then a^(2) gt b^(2)

If a and b are two odd positive integers such that a > b, then prove that one of the two numbers (a+b)/2 and (a-b)/2 is odd and the other is even.

The quadratic x^2+a x+b+1=0 has roots which are positive integers, then (a^2+b^2) can be equal to

RESONANCE ENGLISH-EQUATIONS -EXERCISE-1 (PART -1: PRE RMO)
  1. x,y,z are distinct real numbers such that x+1/y = y + 1/z =z + 1/x Th...

    Text Solution

    |

  2. A hare sees a hound 100 m away from her and runs off in the opposite d...

    Text Solution

    |

  3. a and b are positive integers that a^(2) + 2b = b^(2) + 2a +5. The val...

    Text Solution

    |

  4. a ne 0, b ne 0. The number of real number pair (a, b) which satisfy t...

    Text Solution

    |

  5. The value of root(3)(5+2sqrt(13)) + root(3)(5-2sqrt(13)) is= ……………..

    Text Solution

    |

  6. If a, b, c, d satisfy the equation a + 7b + 3c + 5d = 0, 8a + 4b + 6c ...

    Text Solution

    |

  7. The combined age of a man and his wife is six times the combined ages ...

    Text Solution

    |

  8. If (x+1)^(2) =x, the value of 11x^(3) + 8x^(2) + 8x -2 is:

    Text Solution

    |

  9. If a=2012, b=-1005, c=-1007, then the value of a^(4)/(b+c) +b^(4)/(c+a...

    Text Solution

    |

  10. If one root of sqrt(a-x) + sqrt(b+x) = sqrt(a) + sqrt(b) is 2012, th...

    Text Solution

    |

  11. a and b are the roots of the quadratic equation x^2 + lambdax - 1/(2la...

    Text Solution

    |

  12. The remainder obtained when the polynomial x+x^(3)+x^(9)+x^(27)+x^(81)...

    Text Solution

    |

  13. If x, y are positive real numbers satisfying the system of equations x...

    Text Solution

    |

  14. If a, b, c are positive integers such that a^2+ 2b^2-2ab = 169 and 2bc...

    Text Solution

    |

  15. P = 2008^(2007) - 2008, Q = 2008^(2) + 2009. The remainder when P is d...

    Text Solution

    |

  16. The number of integer values of a for which x^2+ 3ax + 2009 = 0 has tw...

    Text Solution

    |

  17. The sum of the fourth powers of the roots of the equation x^(3)- x^(2)...

    Text Solution

    |

  18. If a,b,c are real, a ne 0, b ne 0, c ne 0 and a+b + c ne 0 and 1/a + 1...

    Text Solution

    |

  19. If the roots x^5-40 x^4+P x^3+Q x^2+R x+S=0 are n G.P. and the sum of ...

    Text Solution

    |

  20. The number of solutions (x, y) where x and y are integers, satisfying ...

    Text Solution

    |