Home
Class 12
MATHS
The value of root(3)(5+2sqrt(13)) + root...

The value of `root(3)(5+2sqrt(13)) + root(3)(5-2sqrt(13))` is= ……………..

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sqrt[3]{5 + 2\sqrt{13}} + \sqrt[3]{5 - 2\sqrt{13}} \), we can follow these steps: ### Step 1: Define the Expression Let \[ x = \sqrt[3]{5 + 2\sqrt{13}} + \sqrt[3]{5 - 2\sqrt{13}} \] ### Step 2: Cube Both Sides Now, we will cube both sides to eliminate the cube roots: \[ x^3 = \left( \sqrt[3]{5 + 2\sqrt{13}} + \sqrt[3]{5 - 2\sqrt{13}} \right)^3 \] ### Step 3: Apply the Cube Formula Using the formula for the cube of a sum, \( (a + b)^3 = a^3 + b^3 + 3ab(a + b) \), we can expand the right-hand side: \[ x^3 = \left(5 + 2\sqrt{13}\right) + \left(5 - 2\sqrt{13}\right) + 3 \sqrt[3]{(5 + 2\sqrt{13})(5 - 2\sqrt{13})} \cdot x \] ### Step 4: Simplify the Expression Calculating \( (5 + 2\sqrt{13})(5 - 2\sqrt{13}) \): \[ (5 + 2\sqrt{13})(5 - 2\sqrt{13}) = 5^2 - (2\sqrt{13})^2 = 25 - 4 \cdot 13 = 25 - 52 = -27 \] Thus, we have: \[ x^3 = 10 + 3 \sqrt[3]{-27} \cdot x \] Since \( \sqrt[3]{-27} = -3 \), we can substitute: \[ x^3 = 10 - 9x \] ### Step 5: Rearrange the Equation Rearranging gives us: \[ x^3 + 9x - 10 = 0 \] ### Step 6: Factor the Polynomial To solve the cubic equation, we can try to find rational roots. Testing \( x = 1 \): \[ 1^3 + 9 \cdot 1 - 10 = 1 + 9 - 10 = 0 \] Thus, \( x = 1 \) is a root. ### Step 7: Factor Out \( (x - 1) \) Now, we can factor \( x^3 + 9x - 10 \) as: \[ (x - 1)(x^2 + x + 10) = 0 \] The quadratic \( x^2 + x + 10 \) does not have real roots (as its discriminant \( 1 - 40 < 0 \)). ### Step 8: Conclusion The only real solution is: \[ x = 1 \] Thus, the value of \( \sqrt[3]{5 + 2\sqrt{13}} + \sqrt[3]{5 - 2\sqrt{13}} \) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • EQUATIONS

    RESONANCE ENGLISH|Exercise EXERCISE-1 (PART -II: RMO) |9 Videos
  • EQUATIONS

    RESONANCE ENGLISH|Exercise EXERCISE-2 (PART-I: PREVIOUS ASKED QUESTION FOR PRE RMO) |26 Videos
  • EQUATIONS

    RESONANCE ENGLISH|Exercise SELF PRACTICE PROBLEMS: |23 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos
  • FUNDAMENTAL OF MATHEMATICS

    RESONANCE ENGLISH|Exercise Exercise|135 Videos

Similar Questions

Explore conceptually related problems

The value of sqrt(5+2sqrt(6)) is (a) sqrt(3)-sqrt(2) (b) sqrt(3)+sqrt(2) (c) sqrt(5)+sqrt(6) (d) none of these

The value of |{:(sqrt(13 )+ sqrt(3), 2sqrt(5),sqrt(5)),(sqrt(15) + sqrt(26),5,sqrt(10)),(3 + sqrt(65), sqrt(15),5):}|

The value of lim_(xrarr1) (root(13)x-root7x)/(root5x-root3x) is

Simplify: (2sqrt(3)+sqrt(5))(2sqrt(3)-sqrt(5))

Find the value of determinant |sqrt((13))+sqrt(3)2sqrt(5)sqrt(5)sqrt((15))+sqrt((26))5sqrt((10))3+sqrt((65))sqrt((15))5|

If vec a and vec b are any two vectors of magnitudes 2 and 3, respectively, such that |2( vec axx vec b)|+|3( vec a. vec b)|=k , then the maximum value of k is a. sqrt(13) b. 2sqrt(13) c. 6sqrt(13) d. 10sqrt(13)

Let y=1/(2+1/(3+1/(2+1/(3+)))) , then the value of y is (a) (sqrt(13)+3)/2 (b) (sqrt(13)-3)/2 (c) (sqrt(15)+3)/2 (d) (sqrt(15)-3)/2

The value of lim_(xtooo) (root(3)(x^(3)+2x^(2))-sqrt(x^(2)+x)) is

sqrt4 , root4(8) , root3(5)

Find the value of determinant |[sqrt((13))+sqrt(3),2sqrt(5),sqrt(5)],[sqrt((15))+sqrt((26)),5,sqrt((10))],[3+sqrt((65)),sqrt((15)),5]|

RESONANCE ENGLISH-EQUATIONS -EXERCISE-1 (PART -1: PRE RMO)
  1. a and b are positive integers that a^(2) + 2b = b^(2) + 2a +5. The val...

    Text Solution

    |

  2. a ne 0, b ne 0. The number of real number pair (a, b) which satisfy t...

    Text Solution

    |

  3. The value of root(3)(5+2sqrt(13)) + root(3)(5-2sqrt(13)) is= ……………..

    Text Solution

    |

  4. If a, b, c, d satisfy the equation a + 7b + 3c + 5d = 0, 8a + 4b + 6c ...

    Text Solution

    |

  5. The combined age of a man and his wife is six times the combined ages ...

    Text Solution

    |

  6. If (x+1)^(2) =x, the value of 11x^(3) + 8x^(2) + 8x -2 is:

    Text Solution

    |

  7. If a=2012, b=-1005, c=-1007, then the value of a^(4)/(b+c) +b^(4)/(c+a...

    Text Solution

    |

  8. If one root of sqrt(a-x) + sqrt(b+x) = sqrt(a) + sqrt(b) is 2012, th...

    Text Solution

    |

  9. a and b are the roots of the quadratic equation x^2 + lambdax - 1/(2la...

    Text Solution

    |

  10. The remainder obtained when the polynomial x+x^(3)+x^(9)+x^(27)+x^(81)...

    Text Solution

    |

  11. If x, y are positive real numbers satisfying the system of equations x...

    Text Solution

    |

  12. If a, b, c are positive integers such that a^2+ 2b^2-2ab = 169 and 2bc...

    Text Solution

    |

  13. P = 2008^(2007) - 2008, Q = 2008^(2) + 2009. The remainder when P is d...

    Text Solution

    |

  14. The number of integer values of a for which x^2+ 3ax + 2009 = 0 has tw...

    Text Solution

    |

  15. The sum of the fourth powers of the roots of the equation x^(3)- x^(2)...

    Text Solution

    |

  16. If a,b,c are real, a ne 0, b ne 0, c ne 0 and a+b + c ne 0 and 1/a + 1...

    Text Solution

    |

  17. If the roots x^5-40 x^4+P x^3+Q x^2+R x+S=0 are n G.P. and the sum of ...

    Text Solution

    |

  18. The number of solutions (x, y) where x and y are integers, satisfying ...

    Text Solution

    |

  19. If p/a + q/b + r/c=1 and a/p + b/q + c/r=0, then the value of p^(2)/a^...

    Text Solution

    |

  20. A cubic polynomial P is such that P(1) = 1, P(2) = 2, P(3) = 3 and P(4...

    Text Solution

    |