Home
Class 12
MATHS
If a=2012, b=-1005, c=-1007, then the va...

If a=2012, `b=-1005, c=-1007`, then the value of `a^(4)/(b+c) +b^(4)/(c+a) + c^(4)/(a+b) + 3abc` is:

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ \frac{a^4}{b+c} + \frac{b^4}{c+a} + \frac{c^4}{a+b} + 3abc \] Given values are: - \( a = 2012 \) - \( b = -1005 \) - \( c = -1007 \) ### Step 1: Calculate \( b+c \), \( c+a \), and \( a+b \) First, we calculate \( b+c \), \( c+a \), and \( a+b \): \[ b+c = -1005 + (-1007) = -2012 \] \[ c+a = -1007 + 2012 = 1005 \] \[ a+b = 2012 - 1005 = 1007 \] ### Step 2: Substitute values into the expression Now, substitute these values into the expression: \[ \frac{a^4}{b+c} + \frac{b^4}{c+a} + \frac{c^4}{a+b} + 3abc = \frac{2012^4}{-2012} + \frac{(-1005)^4}{1005} + \frac{(-1007)^4}{1007} + 3(2012)(-1005)(-1007) \] ### Step 3: Simplify each term 1. **First term:** \[ \frac{2012^4}{-2012} = -2012^3 \] 2. **Second term:** \[ \frac{(-1005)^4}{1005} = 1005^3 \] 3. **Third term:** \[ \frac{(-1007)^4}{1007} = 1007^3 \] 4. **Fourth term:** \[ 3(2012)(-1005)(-1007) = 3 \cdot 2012 \cdot 1005 \cdot 1007 \] ### Step 4: Combine the terms Now, we combine the terms: \[ -2012^3 + 1005^3 + 1007^3 + 3 \cdot 2012 \cdot 1005 \cdot 1007 \] ### Step 5: Use the identity for cubes We can use the identity for the sum of cubes: \[ x^3 + y^3 + z^3 - 3xyz = (x+y+z)(x^2 + y^2 + z^2 - xy - xz - yz) \] Let \( x = 1005 \), \( y = 1007 \), and \( z = -2012 \). Calculating \( x+y+z \): \[ 1005 + 1007 - 2012 = 0 \] Since \( x + y + z = 0 \), we have: \[ x^3 + y^3 + z^3 - 3xyz = 0 \] Thus, \[ x^3 + y^3 + z^3 = 3xyz \] ### Step 6: Calculate \( 3xyz \) Now we calculate \( 3xyz \): \[ 3xyz = 3 \cdot 1005 \cdot 1007 \cdot (-2012) \] ### Final Result Thus, the entire expression evaluates to: \[ 0 \]
Promotional Banner

Topper's Solved these Questions

  • EQUATIONS

    RESONANCE ENGLISH|Exercise EXERCISE-1 (PART -II: RMO) |9 Videos
  • EQUATIONS

    RESONANCE ENGLISH|Exercise EXERCISE-2 (PART-I: PREVIOUS ASKED QUESTION FOR PRE RMO) |26 Videos
  • EQUATIONS

    RESONANCE ENGLISH|Exercise SELF PRACTICE PROBLEMS: |23 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos
  • FUNDAMENTAL OF MATHEMATICS

    RESONANCE ENGLISH|Exercise Exercise|135 Videos

Similar Questions

Explore conceptually related problems

If a = 4, b = -5, c = -8, find the value of (a+b) times c .

If a = 3, b = 2 and c = -4, find the values of: 3ab-3b^(2)+4abc

In triangle ABC, a = 2, b = 3,c = 4 , then the value of cos A is

If a + b + c = 0 and a^(2) + b^(2) + c^(2) = 4, them find the value of a^(4) + b^(4) +c^(4) .

If a+b+c=0a n da^2+b^2+c^2=1, then the value of a^4+b^4+c^4 is 1 b. 4 c. 1/2 d. 1/4

If a ,b ,a n dc are in H.P., then th value of ((a c+a b-b c)(a b+b c-a c))/((a b c)^2) is ((a+c)(3a-c))/(4a^2c^2) b. 2/(b c)-1/(b^2) c. 2/(b c)-1/(a^2) d. ((a-c)(3a+c))/(4a^2c^2)

If a, b, c in R^(+) such that a+b+c=27 , then the maximum value of a^(2)b^(3)c^(4) is equal to

If a= 2, b= 3 and c= 4, find the value of : (ab + bc + ca- a^(2) -b^(2)-c^(2))/(3abc-a^(3)-b^(3)-c^(3)) , using suitable identity

Let a, b, c be positive numbers, then the minimum value of (a^4+b^4+c^2)/(abc)

Let a, b, c be positive numbers, then the minimum value of (a^4+b^4+c^2)/(abc)

RESONANCE ENGLISH-EQUATIONS -EXERCISE-1 (PART -1: PRE RMO)
  1. The combined age of a man and his wife is six times the combined ages ...

    Text Solution

    |

  2. If (x+1)^(2) =x, the value of 11x^(3) + 8x^(2) + 8x -2 is:

    Text Solution

    |

  3. If a=2012, b=-1005, c=-1007, then the value of a^(4)/(b+c) +b^(4)/(c+a...

    Text Solution

    |

  4. If one root of sqrt(a-x) + sqrt(b+x) = sqrt(a) + sqrt(b) is 2012, th...

    Text Solution

    |

  5. a and b are the roots of the quadratic equation x^2 + lambdax - 1/(2la...

    Text Solution

    |

  6. The remainder obtained when the polynomial x+x^(3)+x^(9)+x^(27)+x^(81)...

    Text Solution

    |

  7. If x, y are positive real numbers satisfying the system of equations x...

    Text Solution

    |

  8. If a, b, c are positive integers such that a^2+ 2b^2-2ab = 169 and 2bc...

    Text Solution

    |

  9. P = 2008^(2007) - 2008, Q = 2008^(2) + 2009. The remainder when P is d...

    Text Solution

    |

  10. The number of integer values of a for which x^2+ 3ax + 2009 = 0 has tw...

    Text Solution

    |

  11. The sum of the fourth powers of the roots of the equation x^(3)- x^(2)...

    Text Solution

    |

  12. If a,b,c are real, a ne 0, b ne 0, c ne 0 and a+b + c ne 0 and 1/a + 1...

    Text Solution

    |

  13. If the roots x^5-40 x^4+P x^3+Q x^2+R x+S=0 are n G.P. and the sum of ...

    Text Solution

    |

  14. The number of solutions (x, y) where x and y are integers, satisfying ...

    Text Solution

    |

  15. If p/a + q/b + r/c=1 and a/p + b/q + c/r=0, then the value of p^(2)/a^...

    Text Solution

    |

  16. A cubic polynomial P is such that P(1) = 1, P(2) = 2, P(3) = 3 and P(4...

    Text Solution

    |

  17. Which of the following is the best approximation to ((2^(3)-1) (3^(3)-...

    Text Solution

    |

  18. Given that (1-x) (1+x+x^(2) +x^(3) +x^(4)) = 31/32 and x is a rational...

    Text Solution

    |

  19. Solve the equation 3x^(4) -10x^(3) + 4x^(2) -x-6=0 one root being (1+s...

    Text Solution

    |

  20. Find the smallest integral x satisfying the inequality (x-5)/(x^(2) + ...

    Text Solution

    |