Home
Class 12
MATHS
If xy = a, xz = b, yz = c and abc ne 0, ...

If xy = a, xz = b, yz = c and `abc ne 0`, find the value of `x^2 + y^2 + z^2` in terms of a, b, c.

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( x^2 + y^2 + z^2 \) in terms of \( a, b, c \) given the equations \( xy = a \), \( xz = b \), and \( yz = c \), we can follow these steps: ### Step 1: Express \( x, y, z \) in terms of \( a, b, c \) From the equations: 1. \( xy = a \) implies \( y = \frac{a}{x} \) 2. \( xz = b \) implies \( z = \frac{b}{x} \) 3. \( yz = c \) implies \( z = \frac{c}{y} \) ### Step 2: Substitute \( y \) and \( z \) in terms of \( x \) Using \( y = \frac{a}{x} \) in the equation for \( z \): \[ z = \frac{c}{y} = \frac{c}{\frac{a}{x}} = \frac{cx}{a} \] Now we have: - \( y = \frac{a}{x} \) - \( z = \frac{cx}{a} \) ### Step 3: Substitute \( y \) and \( z \) into \( x^2 + y^2 + z^2 \) Now we can express \( x^2 + y^2 + z^2 \): \[ x^2 + y^2 + z^2 = x^2 + \left(\frac{a}{x}\right)^2 + \left(\frac{cx}{a}\right)^2 \] ### Step 4: Simplify the expression Calculating each term: \[ y^2 = \left(\frac{a}{x}\right)^2 = \frac{a^2}{x^2} \] \[ z^2 = \left(\frac{cx}{a}\right)^2 = \frac{c^2x^2}{a^2} \] Thus, \[ x^2 + y^2 + z^2 = x^2 + \frac{a^2}{x^2} + \frac{c^2x^2}{a^2} \] ### Step 5: Combine the terms To combine these terms, we can factor out \( x^2 \): \[ x^2 + \frac{a^2}{x^2} + \frac{c^2x^2}{a^2} = x^2 \left(1 + \frac{c^2}{a^2}\right) + \frac{a^2}{x^2} \] ### Step 6: Use the product \( xyz \) Now, we know that: \[ xyz = \sqrt{(xy)(xz)(yz)} = \sqrt{abc} \] Thus, \[ x^2y^2z^2 = abc \implies (xyz)^2 = abc \] ### Step 7: Final expression Now substituting \( xyz \) back into the equation: \[ x^2 + y^2 + z^2 = \frac{b^2}{c^2} + \frac{a^2}{b^2} + \frac{a^2}{c^2} \] ### Conclusion Thus, the final expression for \( x^2 + y^2 + z^2 \) in terms of \( a, b, c \) is: \[ x^2 + y^2 + z^2 = \frac{b^2}{c^2} + \frac{a^2}{b^2} + \frac{a^2}{c^2} \]
Promotional Banner

Topper's Solved these Questions

  • EQUATIONS

    RESONANCE ENGLISH|Exercise EXERCISE-1 (PART -II: RMO) |9 Videos
  • EQUATIONS

    RESONANCE ENGLISH|Exercise EXERCISE-2 (PART-I: PREVIOUS ASKED QUESTION FOR PRE RMO) |26 Videos
  • EQUATIONS

    RESONANCE ENGLISH|Exercise SELF PRACTICE PROBLEMS: |23 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos
  • FUNDAMENTAL OF MATHEMATICS

    RESONANCE ENGLISH|Exercise Exercise|135 Videos

Similar Questions

Explore conceptually related problems

If xy = 2, xz = 8 and yz = 5 , then the value of xyz is closest to:

If a = 2, b = 3 and c = -2, find the value of a^(2)+b^(2)+c^(2)-2b-2bc-2ca+3abc

If a+b+c=0 and a^2+b^2+c^2=16 , find the value of a b+b c+c a

If x+y -z = 4 and x^(2) + y^(2) + z^(2) = 30 , then find the value of xy- yz- zx

If x-y +z = 5 and x^(2) +y^(2) +z^(2) = 49, find the value of : zx-xy -yz.

If the planes x-c y-b z=0,c x=y+a z=0a n db x+a y-z=0 pass through a straight line, then find the value of a^2+b^2+c^2+2a b cdot

If the planes x-c y-b z=0,c x=y+a z=0a n db x+a y-z=0 pass through a straight line, then find the value of a^2+b^2+c^2+2a b cdot

If x = 6a + 8b + 9c, y = 2b - 3a - 6c and z = c - b + 3a, find : x + y + z

If x = 6a + 8b + 9c, y = 2b - 3a - 6c and z = c - b + 3a, find : 2x - y - 3z

If x=c y+b z ,y=a z+c x ,z=x+a y ,w h e r e .x ,y ,z are not all zeros, then find the value of a^2+b^2+c^2+2a b c dot

RESONANCE ENGLISH-EQUATIONS -EXERCISE-1 (PART -1: PRE RMO)
  1. The number of integer values of a for which x^2+ 3ax + 2009 = 0 has tw...

    Text Solution

    |

  2. The sum of the fourth powers of the roots of the equation x^(3)- x^(2)...

    Text Solution

    |

  3. If a,b,c are real, a ne 0, b ne 0, c ne 0 and a+b + c ne 0 and 1/a + 1...

    Text Solution

    |

  4. If the roots x^5-40 x^4+P x^3+Q x^2+R x+S=0 are n G.P. and the sum of ...

    Text Solution

    |

  5. The number of solutions (x, y) where x and y are integers, satisfying ...

    Text Solution

    |

  6. If p/a + q/b + r/c=1 and a/p + b/q + c/r=0, then the value of p^(2)/a^...

    Text Solution

    |

  7. A cubic polynomial P is such that P(1) = 1, P(2) = 2, P(3) = 3 and P(4...

    Text Solution

    |

  8. Which of the following is the best approximation to ((2^(3)-1) (3^(3)-...

    Text Solution

    |

  9. Given that (1-x) (1+x+x^(2) +x^(3) +x^(4)) = 31/32 and x is a rational...

    Text Solution

    |

  10. Solve the equation 3x^(4) -10x^(3) + 4x^(2) -x-6=0 one root being (1+s...

    Text Solution

    |

  11. Find the smallest integral x satisfying the inequality (x-5)/(x^(2) + ...

    Text Solution

    |

  12. Find integral 'x's which satisfy the inequality x^(4) -3x^(3) -x +3 lt...

    Text Solution

    |

  13. Find the largest integral x which satisfies the following inequality: ...

    Text Solution

    |

  14. Given 3x^(2) +x=1, find the value of 6x^(3) - x^(2) -3x + 2010.

    Text Solution

    |

  15. If 1/x - 1/y=4, find the value of (2x+4xy-2y)/(x-y-2xy).

    Text Solution

    |

  16. Let f(x)=ax^(7)+bx^(3)+cx-5where a,b and c are constants. If f(-7)=7, ...

    Text Solution

    |

  17. If xy = a, xz = b, yz = c and abc ne 0, find the value of x^2 + y^2 +...

    Text Solution

    |

  18. Find the number of positive integers x satisfying the equation 1/x + 1...

    Text Solution

    |

  19. Solve the following equation: (x-1) (x-2)(x-3)(x-4)=15

    Text Solution

    |

  20. Solve the following equation : (x^(2)-3.5 x + 1.5)/(x^(2)-x-6)=0

    Text Solution

    |