Home
Class 12
MATHS
If each pair of the three equations x^(2...

If each pair of the three equations `x^(2) - p_(1)x + q_(1) =0, x^(2) -p_(2)c + q_(2)=0, x^(2)-p_(3)x + q_(3)=0` have common root, prove that, `p_(1)^(2)+ p_(2)^(2) + p_(3)^(2) + 4(q_(1)+q_(2)+q_(3)) =2(p_(2)p_(3) + p_(3)p_(1) + p_(1)p_(2))`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • EQUATIONS

    RESONANCE ENGLISH|Exercise EXERCISE-2 (PART-I: PREVIOUS ASKED QUESTION FOR PRE RMO) |26 Videos
  • EQUATIONS

    RESONANCE ENGLISH|Exercise EXERCISE-2 (PART-II: PREVIOUSLY ASKED QUESTION OF RMO) |5 Videos
  • EQUATIONS

    RESONANCE ENGLISH|Exercise EXERCISE-1 (PART -1: PRE RMO) |46 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos
  • FUNDAMENTAL OF MATHEMATICS

    RESONANCE ENGLISH|Exercise Exercise|135 Videos

Similar Questions

Explore conceptually related problems

If x^(2)+px+q=0 and x^(2)+qx+p=0 have a common root, prove that either p=q or 1+p+q=0 .

If the line of regression of Y on X is p_(1)x + q_(1)y + r_(1)= 0 and that of X on Y is p_(2)x + q_(2)y + r_(2)= 0 , prove that (p_(1)q_(2))/(p_(2)q_(1)) le 1

If the roots of the equation (1-q+p^(2)/2)x^(2) + p(1+q)x+q(q-1) +p^(2)/2=0 are equal, then show that p^(2) = 4q

If p(q-r)x^2+q(r-p)x+r(p-q)=0 has equal roots, then prove that 2/q=1/p+1/rdot

If p(q-r)x^2+q(r-p)x+r(p-q)=0 has equal roots, then prove that 2/q=1/p+1/rdot

If p and q are the roots of the equation x^2-p x+q=0 , then (a) p=1,\ q=-2 (b) p=1,\ q=0 (c) p=-2,\ q=0 (d) p=-2,\ q=1

If a, b are the roots of equation x^(2)-3x + p =0 and c, d are the roots of x^(2) - 12x + q = 0 and a, b, c, d are in G.P., then prove that : p : q =1 : 16

Subtract : 3p^(3)-5p^(2)q from q^(2)+p^(2)q-4p^(3)

if x,y and z are not all zero and connected by the equations a_(1)x+b_(1)y+c_(1)z=0,a_(z)x+b_(2)y+c_(2)z=0 and (p_(1)+lambdaq_(1))x+(p_(2)+lambdaq_(2))y+(p_(3)+lambdaq_(3))z=0 show that lambda =-|{:(a_(1),,b_(1),,c_(1)),(a_(2) ,,b_(2),,c_(2)),(p_(1) ,, p_(2),,p_(3)):}|-:|{:(a_(1),,b_(1),,c_(1)),(a_(2) ,,b_(2),,c_(2)),(q_(1) ,, q_(2),,q_(3)):}|

If p and q are the roots of x^2 + px + q = 0 , then find p.