Home
Class 12
MATHS
Solve the system: x sin a + y sin 2a +...

Solve the system:
`x sin a + y sin 2a + z sin 3a = sin 4a`
`x sin b + y sin 2b + z sin 3b = sin 4b`
`x sin c + y sin 2c + z sin 3c = sin 4c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the system of equations given by: 1. \( x \sin a + y \sin 2a + z \sin 3a = \sin 4a \) 2. \( x \sin b + y \sin 2b + z \sin 3b = \sin 4b \) 3. \( x \sin c + y \sin 2c + z \sin 3c = \sin 4c \) we will follow these steps: ### Step 1: Rewrite the equations using sine double angle and triple angle formulas We know that: - \( \sin 2a = 2 \sin a \cos a \) - \( \sin 3a = 3 \sin a - 4 \sin^3 a \) - \( \sin 4a = 2 \sin 2a \cos 2a = 4 \sin a \cos a \cos 2a \) Substituting these into the first equation gives: \[ x \sin a + y (2 \sin a \cos a) + z (3 \sin a - 4 \sin^3 a) = 4 \sin a \cos a \cos 2a \] Factoring out \( \sin a \) (assuming \( \sin a \neq 0 \)): \[ x + 2y \cos a + z (3 - 4 \sin^2 a) = 4 \cos a \cos 2a \] ### Step 2: Simplify the equation Using the identity \( \cos 2a = 2 \cos^2 a - 1 \), we can rewrite \( 4 \cos a \cos 2a \): \[ 4 \cos a (2 \cos^2 a - 1) = 8 \cos^3 a - 4 \cos a \] Thus, the equation becomes: \[ x + 2y \cos a + z (3 - 4 \sin^2 a) = 8 \cos^3 a - 4 \cos a \] ### Step 3: Substitute \( \sin^2 a \) with \( 1 - \cos^2 a \) Substituting \( \sin^2 a = 1 - \cos^2 a \): \[ x + 2y \cos a + z (3 - 4(1 - \cos^2 a)) = 8 \cos^3 a - 4 \cos a \] This simplifies to: \[ x + 2y \cos a + z (4 \cos^2 a - 1) = 8 \cos^3 a - 4 \cos a \] ### Step 4: Rearranging the equation Rearranging gives us a polynomial in \( \cos a \): \[ 8 \cos^3 a - (4 + 4z) \cos^2 a + (2y + 4) \cos a + (x + z) = 0 \] ### Step 5: Repeat for other equations Repeat the same process for equations 2 and 3: - For \( b \), we will have a similar polynomial in \( \cos b \). - For \( c \), we will have a similar polynomial in \( \cos c \). ### Step 6: Roots of the polynomial The values \( \cos a \), \( \cos b \), and \( \cos c \) will be the roots of the respective polynomials derived from the equations. ### Conclusion The solution to the system of equations is the values of \( x, y, z \) that satisfy the derived polynomial equations for \( \cos a, \cos b, \cos c \).
Promotional Banner

Topper's Solved these Questions

  • EQUATIONS

    RESONANCE ENGLISH|Exercise EXERCISE-2 (PART-I: PREVIOUS ASKED QUESTION FOR PRE RMO) |26 Videos
  • EQUATIONS

    RESONANCE ENGLISH|Exercise EXERCISE-2 (PART-II: PREVIOUSLY ASKED QUESTION OF RMO) |5 Videos
  • EQUATIONS

    RESONANCE ENGLISH|Exercise EXERCISE-1 (PART -1: PRE RMO) |46 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos
  • FUNDAMENTAL OF MATHEMATICS

    RESONANCE ENGLISH|Exercise Exercise|135 Videos

Similar Questions

Explore conceptually related problems

Solve 4 sin x sin 2x sin 4x = sin 3x .

If x=Sin 1, y = Sin 2, z= Sin 3 then

Prove that (sin (A - B))/( sin A sin B ) + ( sin (B -C))/( sin B sin C ) + (sin (C - A))/( sin C sin A) =0

Prove that sin2A + sin2B + sin2C = 4sinA · sinB · sin C

If A + B + C = 180^@ , then prove that sin 2 A+ sin 2B + sin 2C = 4 sin A sin B sin C

Prove that sin (x + y ) sin (x -y) + sin ( y+ z) sin (y - z) + sin (z+x) sin (z-x) = 0.

If A+B+C=pi , show that : 1/2 sum sin^2 A (sin 2B+sin 2C) = 3 sin A sin B sin C .

Prove that a cos A + b cos B + c cos C = 4 R sin A sin B sin C.

In /_\ABC , if sin A= 1/3 and sin B= 1/4 , sin C=

If xsina+ysin2a+zsin3a=sin4a xsinb+ysin2b+zsin3b=sin4b xsinc+ysin2c+zsin3c=sin4c then the roots of the equation t^3-(z/2)t^2-((y+2)/4)t+((z-x)/8)=0,a , b , c ,!=npi, are sina ,sinb ,sinc (b) cosa ,cosb ,cosc sin2a ,sin2b ,sin2c (d) cos2a ,cos2bcos2c