Home
Class 12
MATHS
Find the real numbers (x,y) that satisfy...

Find the real numbers (x,y) that satisfy the equation:
`xy^(2) = 15x^(2) +17xy + 15y^(2)`
`x^(2)y = 20x^(2) + 3y^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equations given: 1. \( xy^2 = 15x^2 + 17xy + 15y^2 \) (Equation 1) 2. \( x^2y = 20x^2 + 3y^2 \) (Equation 2) We will follow these steps: ### Step 1: Rewrite the equations We can rewrite Equation 1 as: \[ xy^2 - 15x^2 - 17xy - 15y^2 = 0 \] And Equation 2 as: \[ x^2y - 20x^2 - 3y^2 = 0 \] ### Step 2: Divide both equations by \( y^2 \) Dividing Equation 1 by \( y^2 \): \[ \frac{xy^2}{y^2} - \frac{15x^2}{y^2} - \frac{17xy}{y^2} - \frac{15y^2}{y^2} = 0 \] This simplifies to: \[ x = 15\left(\frac{x}{y}\right)^2 + 17\left(\frac{x}{y}\right) + 15 \] Dividing Equation 2 by \( y^2 \): \[ \frac{x^2y}{y^2} - \frac{20x^2}{y^2} - \frac{3y^2}{y^2} = 0 \] This simplifies to: \[ \frac{x^2}{y} = 20\left(\frac{x}{y}\right)^2 + 3 \] ### Step 3: Let \( r = \frac{x}{y} \) From the first equation, we have: \[ x = 15r^2 + 17r + 15 \] From the second equation: \[ \frac{x^2}{y} = 20r^2 + 3 \] This implies: \[ x = y(20r^2 + 3) \] ### Step 4: Equate the two expressions for \( x \) Setting the two expressions for \( x \) equal: \[ 15r^2 + 17r + 15 = y(20r^2 + 3) \] ### Step 5: Substitute \( y \) in terms of \( r \) Since \( y = \frac{x}{r} \), we can substitute \( y \): \[ 15r^2 + 17r + 15 = \frac{x}{r}(20r^2 + 3) \] ### Step 6: Cross multiply Cross-multiplying gives: \[ r(15r^2 + 17r + 15) = x(20r^2 + 3) \] ### Step 7: Substitute \( x \) from the first equation Substituting \( x = 15r^2 + 17r + 15 \) into the equation: \[ r(15r^2 + 17r + 15) = (15r^2 + 17r + 15)(20r^2 + 3) \] ### Step 8: Expand and simplify Expanding both sides: \[ 15r^3 + 17r^2 + 15r = (15r^2 + 17r + 15)(20r^2 + 3) \] This leads to a polynomial equation in \( r \). ### Step 9: Solve the polynomial equation After simplifying the polynomial, we can factor or use the Rational Root Theorem to find the roots. ### Step 10: Find \( x \) and \( y \) Once we find \( r \), we can find \( x \) and \( y \) using: \[ x = 15r^2 + 17r + 15 \] \[ y = \frac{x}{r} \] ### Final Answer After solving, we find: - \( x = 19 \) - \( y = 95 \) Thus, the solution is \( (x, y) = (19, 95) \).
Promotional Banner

Topper's Solved these Questions

  • EQUATIONS

    RESONANCE ENGLISH|Exercise EXERCISE-2 (PART-I: PREVIOUS ASKED QUESTION FOR PRE RMO) |26 Videos
  • EQUATIONS

    RESONANCE ENGLISH|Exercise EXERCISE-2 (PART-II: PREVIOUSLY ASKED QUESTION OF RMO) |5 Videos
  • EQUATIONS

    RESONANCE ENGLISH|Exercise EXERCISE-1 (PART -1: PRE RMO) |46 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos
  • FUNDAMENTAL OF MATHEMATICS

    RESONANCE ENGLISH|Exercise Exercise|135 Videos

Similar Questions

Explore conceptually related problems

If x, y satisfy the equation, y^(x)=x^(y) and x=2y , then x^(2)+y^(2)=

Simplify the following : 3xy^(2) - 5x^(2)y + 7xy - 9xy^(2) - 4xy + 6x^(2)y

Find the number of ordered pair of real numbers (x, y) satisfying the equation: 5x(1+1/(x^(2)+y^(2)))=12 & 5y(1-1/(x^(2) + y^(2))) =4

Find the number of ordered pairs of natural numbers (x, y) satisfying the equation: (xy-1)^(2) = (x+1)^(2) + (y+1)^(2)

Evaluate : 3x^(2) + 5xy - 4y^(2) + x^(2) - 8xy - 5y^(2)

If x and y satisfy te equation xy-2x^(2)-9x+3y-16=0 then

Simplify the following : 2x^(2) + 3y^(2) - 5xy +5x^(2) - y^(2) + 6xy - 3x^(2)

Subtract : 2x^(2) + 3xy - 4y^(2) " from " 4x^(2) - xy +3y^(2)

Add : 5x^(2)-2xy +8y^(2), 3xy -7y^(2)-2x^(2) and y^(2)+xy-4x^(2) .

Subtract : 7xy + 5x^(2) - 7y^(2) + 3 " from " 7x^(2) - 8xy + 3y^(2) - 5