Home
Class 12
PHYSICS
In an experiment, brass and steel wires ...

In an experiment, brass and steel wires of length 1 m each with areas of cross section `1mm^(2)` are used. The wires are connected in series and one end of the combined wire is connected to a rigid support and other end is subjected to elongation. The stress required to produce a net elongation of 0.2 mm is, [Given, the Young’s Modulus for steel and brass are, respectively, `120 xx 10^(9) N//m^(2) and 60 xx 10^(9) N//m^(2)`

A

`8.0 xx 10^(6) N//m^(2)`

B

`1.2 xx 10^(6) N//m^(2)`

C

`4.0 xx 10^(6) N//m^(2)`

D

`0.2 xx 10^(6) N//m^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the stress required to produce a net elongation of 0.2 mm in a series arrangement of brass and steel wires. ### Given Data: - Length of each wire, \( L = 1 \, \text{m} = 1000 \, \text{mm} \) - Area of cross-section, \( A = 1 \, \text{mm}^2 = 1 \times 10^{-6} \, \text{m}^2 \) - Young’s Modulus for steel, \( Y_s = 120 \times 10^9 \, \text{N/m}^2 \) - Young’s Modulus for brass, \( Y_b = 60 \times 10^9 \, \text{N/m}^2 \) - Net elongation, \( \Delta L = 0.2 \, \text{mm} = 0.2 \times 10^{-3} \, \text{m} \) ### Step-by-Step Solution: 1. **Understand the Series Connection**: When two wires are connected in series, the total elongation (\( \Delta L \)) is the sum of the elongations of each wire: \[ \Delta L = \Delta L_1 + \Delta L_2 \] 2. **Relate Elongation to Stress and Young's Modulus**: The elongation of each wire can be expressed using the formula: \[ \Delta L = \frac{F L}{A Y} \] Where \( F \) is the force applied, \( L \) is the length of the wire, \( A \) is the cross-sectional area, and \( Y \) is Young's modulus. 3. **Calculate Elongation for Each Wire**: For the brass wire: \[ \Delta L_1 = \frac{F L}{A Y_b} = \frac{F \cdot 1}{1 \times 10^{-6} \cdot 60 \times 10^9} \] For the steel wire: \[ \Delta L_2 = \frac{F L}{A Y_s} = \frac{F \cdot 1}{1 \times 10^{-6} \cdot 120 \times 10^9} \] 4. **Substituting into the Total Elongation Equation**: Substitute \( \Delta L_1 \) and \( \Delta L_2 \) into the total elongation equation: \[ 0.2 \times 10^{-3} = \frac{F \cdot 1}{1 \times 10^{-6} \cdot 60 \times 10^9} + \frac{F \cdot 1}{1 \times 10^{-6} \cdot 120 \times 10^9} \] 5. **Factor Out Common Terms**: Factor out \( F \) and the common area term: \[ 0.2 \times 10^{-3} = F \left( \frac{1}{1 \times 10^{-6} \cdot 60 \times 10^9} + \frac{1}{1 \times 10^{-6} \cdot 120 \times 10^9} \right) \] 6. **Calculate the Right Side**: Simplifying the right side: \[ = F \left( \frac{1}{60 \times 10^3} + \frac{1}{120 \times 10^3} \right) = F \left( \frac{2 + 1}{120 \times 10^3} \right) = F \left( \frac{3}{120 \times 10^3} \right) \] 7. **Setting Up the Equation**: Now, equate and solve for \( F \): \[ 0.2 \times 10^{-3} = F \left( \frac{3}{120 \times 10^3} \right) \] \[ F = \frac{0.2 \times 10^{-3} \cdot 120 \times 10^3}{3} = \frac{24}{3} = 8 \, \text{N} \] 8. **Calculate Stress**: Stress (\( \sigma \)) is given by: \[ \sigma = \frac{F}{A} = \frac{8}{1 \times 10^{-6}} = 8 \times 10^6 \, \text{N/m}^2 = 8 \times 10^8 \, \text{N/m}^2 \] ### Final Answer: The stress required to produce a net elongation of 0.2 mm is \( 8 \times 10^8 \, \text{N/m}^2 \).

To solve the problem, we need to determine the stress required to produce a net elongation of 0.2 mm in a series arrangement of brass and steel wires. ### Given Data: - Length of each wire, \( L = 1 \, \text{m} = 1000 \, \text{mm} \) - Area of cross-section, \( A = 1 \, \text{mm}^2 = 1 \times 10^{-6} \, \text{m}^2 \) - Young’s Modulus for steel, \( Y_s = 120 \times 10^9 \, \text{N/m}^2 \) - Young’s Modulus for brass, \( Y_b = 60 \times 10^9 \, \text{N/m}^2 \) - Net elongation, \( \Delta L = 0.2 \, \text{mm} = 0.2 \times 10^{-3} \, \text{m} \) ...
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST - 13

    VMC MODULES ENGLISH|Exercise PHYSICS (SECTION 2)|5 Videos
  • JEE MAIN REVISION TEST - 12

    VMC MODULES ENGLISH|Exercise PHYSICS|25 Videos
  • JEE MAIN REVISION TEST - 18

    VMC MODULES ENGLISH|Exercise PHYSICS - SECTION 2|5 Videos