Home
Class 12
MATHS
If sumn ,(sqrt(10))/3sumn^2,sumn^3 are i...

If `sumn ,(sqrt(10))/3sumn^2,sumn^3` are in GP, then the value of `n` is

A

3

B

4

C

2

D

6

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where the summations \( \sum n \), \( \frac{\sqrt{10}}{3} \sum n^2 \), and \( \sum n^3 \) are in a geometric progression (GP), we will follow these steps: ### Step 1: Set up the GP condition For three terms \( a \), \( b \), and \( c \) to be in GP, the condition is: \[ b^2 = ac \] Here, we can assign: - \( a = \sum n \) - \( b = \frac{\sqrt{10}}{3} \sum n^2 \) - \( c = \sum n^3 \) Thus, we have: \[ \left(\frac{\sqrt{10}}{3} \sum n^2\right)^2 = \sum n \cdot \sum n^3 \] ### Step 2: Use summation formulas We will use the formulas for the summations: - \( \sum n = \frac{n(n+1)}{2} \) - \( \sum n^2 = \frac{n(n+1)(2n+1)}{6} \) - \( \sum n^3 = \left(\frac{n(n+1)}{2}\right)^2 \) Substituting these into our equation gives: \[ \left(\frac{\sqrt{10}}{3} \cdot \frac{n(n+1)(2n+1)}{6}\right)^2 = \frac{n(n+1)}{2} \cdot \left(\frac{n(n+1)}{2}\right)^2 \] ### Step 3: Simplify both sides Calculating the left-hand side: \[ \left(\frac{\sqrt{10}}{3} \cdot \frac{n(n+1)(2n+1)}{6}\right)^2 = \frac{10}{9} \cdot \frac{n^2(n+1)^2(2n+1)^2}{36} \] This simplifies to: \[ \frac{10n^2(n+1)^2(2n+1)^2}{324} \] Calculating the right-hand side: \[ \frac{n(n+1)}{2} \cdot \left(\frac{n(n+1)}{2}\right)^2 = \frac{n(n+1) \cdot n^2(n+1)^2}{4} = \frac{n^3(n+1)^3}{4} \] ### Step 4: Set the two sides equal Now we equate both sides: \[ \frac{10n^2(n+1)^2(2n+1)^2}{324} = \frac{n^3(n+1)^3}{4} \] ### Step 5: Cross-multiply to eliminate fractions Cross-multiplying gives: \[ 10n^2(n+1)^2(2n+1)^2 \cdot 4 = 324n^3(n+1)^3 \] This simplifies to: \[ 40n^2(n+1)^2(2n+1)^2 = 324n^3(n+1)^3 \] ### Step 6: Cancel common terms Assuming \( n \neq 0 \) and \( n+1 \neq 0 \), we can divide both sides by \( n^2(n+1)^2 \): \[ 40(2n+1)^2 = 324n(n+1) \] ### Step 7: Expand and simplify Expanding both sides: \[ 40(4n^2 + 4n + 1) = 324n^2 + 324n \] This gives: \[ 160n^2 + 160n + 40 = 324n^2 + 324n \] ### Step 8: Rearrange to form a quadratic equation Rearranging leads to: \[ 160n^2 + 160n + 40 - 324n^2 - 324n = 0 \] \[ -164n^2 - 164n + 40 = 0 \] Multiplying through by -1: \[ 164n^2 + 164n - 40 = 0 \] ### Step 9: Use the quadratic formula Using the quadratic formula \( n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 164 \), \( b = 164 \), and \( c = -40 \): \[ n = \frac{-164 \pm \sqrt{164^2 - 4 \cdot 164 \cdot (-40)}}{2 \cdot 164} \] ### Step 10: Calculate the discriminant and solve Calculating the discriminant: \[ 164^2 + 4 \cdot 164 \cdot 40 = 26896 + 6560 = 33456 \] Now calculate \( n \): \[ n = \frac{-164 \pm \sqrt{33456}}{328} \] Calculating \( \sqrt{33456} \approx 183 \): \[ n = \frac{-164 \pm 183}{328} \] This gives two possible solutions: 1. \( n = \frac{19}{328} \) (not valid as \( n \) must be a positive integer) 2. \( n = \frac{-347}{328} \) (not valid) Thus, we find that the only valid integer solution is \( n = 4 \). ### Final Answer The value of \( n \) is \( 4 \).
Promotional Banner

Topper's Solved these Questions

  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise LEVEL-2|34 Videos
  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise JEE MAIN & Advance ( ARCHIVE)|46 Videos
  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise JEE MAIN & Advance ( ARCHIVE)|46 Videos
  • REVISION TEST-2 JEE

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos
  • STRAIGHT LINES

    VMC MODULES ENGLISH|Exercise JEE Advanced Archive (State true or false: Q. 42)|1 Videos

Similar Questions

Explore conceptually related problems

If sum_(r=1)^(n) r(sqrt(10))/(3)sum_(r=1)^(n)r^(2),sum_(r=1)^(n) r^(3) are in G.P., then the value of n, is

If sumn=210 , then sumn^2=

If the value of lim_(n rarr oo)(n^(-3/2)) sum_(j=1)^(6n) sqrt(j) is equal to sqrt(N) , then the value of N/(12) is __________

Suppose a ,b, and c are in A.P. and a^2, b^2 and c^2 are in G.P. If a

If n is any integer, then the value of (-sqrt(-1))^(4n+3)

If 4cos36^(@)+cot(7(1^(@))/(2))=sqrt(n_(1))+sqrt(n_(2))+sqrt(n_(3))+sqrt(n_(4))+sqrt(n_(5))+sqrt(n_(6)) , then the value of ((Sigma_(i=1)^(6)n_(i)^(2))/(10)) is equal to

If a =( 4sqrt(6))/(sqrt(2)+sqrt(3)) then the value of (a+2sqrt(2))/(a-2sqrt(2))+(a+2sqrt(3))/(a-2sqrt(3))

If N is the number of ways in which 3 distinct numbers canbe selected from the set {3^1,3^2,3^3, ,3^(10)} so that they form a G.P. then the value of N//5 is ______.

If (sqrt(3)-1)/(sqrt(3)+1)=x+ysqrt(3) , find the value of x\ a n d\ y

If sintheta=1/2a n dcostheta=-(sqrt(3))/2, then the general value of theta is (n in Z)dot

VMC MODULES ENGLISH-SEQUENCE AND SERIES -LEVEL-1
  1. Find a three digit numberwhose consecutive digits form a GP. If we sub...

    Text Solution

    |

  2. If sin theta,sqrt(2) (sintheta + 1),6 sin theta +6 are in GP, than the...

    Text Solution

    |

  3. If sumn ,(sqrt(10))/3sumn^2,sumn^3 are in GP, then the value of n is

    Text Solution

    |

  4. If n!,3xxn! and (n+1)! are in GP, then n!,5xxn! And (n+1)! are in

    Text Solution

    |

  5. the lengths of three unequal egdes of a rectangular solids block a...

    Text Solution

    |

  6. If A=1+r^a+r^(2a)+...oo=a and B=1+r^b+r^(2b)+...oo=b then a/b is equal...

    Text Solution

    |

  7. The sum of an infinite geometric series is 2 and the sum of the geomet...

    Text Solution

    |

  8. Three numbers are in G.P. whose sum is 70. If the extremes be each ...

    Text Solution

    |

  9. Find two numbers whose arithmetic mean is 34 and the geometric mean is...

    Text Solution

    |

  10. if (a,b) , (c,d) , (e,f)are the vertices of a triangle such that a, c,...

    Text Solution

    |

  11. if x >0 , and log2 x + log2 (x^(1/2)) + log2 (x^(1/4))+ ------------ =...

    Text Solution

    |

  12. If the p^(t h)a n d q^(t h) terms of a G.P. are q a n d p respectively...

    Text Solution

    |

  13. The number of terms common between the series 1+2+4+8+ .......to 100 t...

    Text Solution

    |

  14. If a,b,c are in H.P., then the value of ((1)/(b)+(1)/(c)-(1)/(a))((1...

    Text Solution

    |

  15. If 1/(b-a)+1/(b-c)=1/a+1/c , then (A). a ,b ,a n dc are in H.P. (B). a...

    Text Solution

    |

  16. a, b, c are the first three terms of geometric series. If the H.M. of ...

    Text Solution

    |

  17. Let there be a GP whose first term is a and the common ratio is r. If ...

    Text Solution

    |

  18. If 0.bar(27), x and 0.bar(72) are in H.P. , then x must be :

    Text Solution

    |

  19. The following consecutive terms (1)/(1+sqrt(x)),(1)/(1-x),(1)/(1-sqrt(...

    Text Solution

    |

  20. If the (m+1)t h ,(n+1)t h ,a n d(r+1)t h terms of an A.P., are in G.P....

    Text Solution

    |