Home
Class 12
MATHS
sum(r=1)^n (a^r +br) , a , b in R^+ ...

`sum_(r=1)^n (a^r +br) , a , b in R^+` is equal to :

A

`(1-a^n)/(1-a) + (bn(n+1))/2`

B

`(b(1-a^n))/(1-a) + (an(n+1))/2`

C

`(a(1-a^n))/(1-a) + (bn(n+1))/2`

D

`(a(1-a^n))/(1-a) + (an(n+1))/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the summation \( \sum_{r=1}^{n} (a^r + br) \), where \( a, b \in \mathbb{R}^+ \), we can break it down into two separate summations: 1. **Summation of \( a^r \)** from \( r=1 \) to \( n \) 2. **Summation of \( br \)** from \( r=1 \) to \( n \) ### Step 1: Calculate the summation of \( a^r \) The first part of the summation is: \[ \sum_{r=1}^{n} a^r \] This is a geometric series where the first term \( a^1 = a \) and the common ratio \( r = a \). The formula for the sum of the first \( n \) terms of a geometric series is given by: \[ S_n = a \frac{1 - r^n}{1 - r} \] In our case, substituting \( a \) for the first term and \( a \) for the common ratio, we have: \[ \sum_{r=1}^{n} a^r = a \frac{1 - a^n}{1 - a} \] ### Step 2: Calculate the summation of \( br \) The second part of the summation is: \[ \sum_{r=1}^{n} br \] We can factor out \( b \): \[ \sum_{r=1}^{n} br = b \sum_{r=1}^{n} r \] The sum of the first \( n \) natural numbers is given by the formula: \[ \sum_{r=1}^{n} r = \frac{n(n + 1)}{2} \] Thus, substituting this into our equation gives: \[ \sum_{r=1}^{n} br = b \cdot \frac{n(n + 1)}{2} \] ### Step 3: Combine the results Now, we can combine both parts of the summation: \[ \sum_{r=1}^{n} (a^r + br) = \sum_{r=1}^{n} a^r + \sum_{r=1}^{n} br \] Substituting the results we calculated: \[ = a \frac{1 - a^n}{1 - a} + b \cdot \frac{n(n + 1)}{2} \] ### Final Answer Thus, the final result for the summation \( \sum_{r=1}^{n} (a^r + br) \) is: \[ \sum_{r=1}^{n} (a^r + br) = a \frac{1 - a^n}{1 - a} + \frac{b n(n + 1)}{2} \] ---
Promotional Banner

Topper's Solved these Questions

  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise LEVEL-2|34 Videos
  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise JEE MAIN & Advance ( ARCHIVE)|46 Videos
  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise JEE MAIN & Advance ( ARCHIVE)|46 Videos
  • REVISION TEST-2 JEE

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos
  • STRAIGHT LINES

    VMC MODULES ENGLISH|Exercise JEE Advanced Archive (State true or false: Q. 42)|1 Videos

Similar Questions

Explore conceptually related problems

The value of sum_(r=1)^(n+1)(sum_(k=1)^n "^k C_(r-1)) ( where r ,k ,n in N) is equal to a. 2^(n+1)-2 b. 2^(n+1)-1 c. 2^(n+1) d. none of these

sum_(r=1)^n r(n-r) is equal to :

sum_(r=1)^n r (n-r +1) is equal to :

The sum of the series sum_(r=1)^(n) (-1)^(r-1).""^(n)C_(r)(a-r), n gt 1 is equal to :

The value of sum_(r=0)^(n) r(n -r) (""^(n)C_(r))^(2) is equal to

The value of sum_(r=0)^n(a+r+a r)(-a)^r is equal to a. (-1)^n[(n+1)a^(n+1)-a] b. (-1)^n(n+1)a^(n+1) c. (-1)^n((n+2)a^(n+1))/2 d. (-1)^n(n a^n)/2

lim_(nrarr0) sum_(r=1)^(n) ((r^(3))/(r^(4)+n^(4))) equals to :

If a = sum_(r=1)^(oo) 1/(r^(2)), b = sum_(r=1)^(oo) 1/((2r-1)^(2)), then (3a)/b is equal to _____

If sum_(r=0)^(203)((r^(2)+2)(r+1)!+2r(r+1)!)=a!-2(b) (where a,b in N ), then a-b is equal to_____

The value of sum_(r=0)^(2n)(-1)^(r)*(""^(2n)C_(r))^(2) is equal to :

VMC MODULES ENGLISH-SEQUENCE AND SERIES -LEVEL-1
  1. If log(a+c)+log(a+c-2b)=2log(a-c) then

    Text Solution

    |

  2. If a ,b ,c are digits, then the rational number represented by odotc a...

    Text Solution

    |

  3. sum(r=1)^n (a^r +br) , a , b in R^+ is equal to :

    Text Solution

    |

  4. sum(r=1)^n r(n-r) is equal to :

    Text Solution

    |

  5. Value of 1+1/(1+2)+1/(1+2+3)+....+1/(1+2+3+....+n) is equal to

    Text Solution

    |

  6. If sum(r=1)^n I(r)=(3^n -1) , then sum(r=1)^n 1/(I(r)) is equal to :

    Text Solution

    |

  7. Let Sn denote the sum of the cubes of first n nastural numbers and sn ...

    Text Solution

    |

  8. If Sn=sum(r=1)^n(1+2+2^2+ .......+2^r)/(2^r), then Sn is equal to (a)2...

    Text Solution

    |

  9. If a > 1, b > 1, then the minimum value of logb a + loga b is

    Text Solution

    |

  10. Let tn =n.(n!) Then sum(n=1)^(15) tn is equal to

    Text Solution

    |

  11. A series whose n^(th) term is (n/x), then sum of r terms will be

    Text Solution

    |

  12. x gt0, then the sum of the series e^(-x)-e^(-2x)+e^(-3x)-... i s

    Text Solution

    |

  13. Find the sum up to 20 terms. 1+1/2(1+2)+1/3(1+2+3)+1/4(1+2+3+4)+

    Text Solution

    |

  14. Find the 1+2.2+3.2^2+…….+tn

    Text Solution

    |

  15. The sum of the first n terms of the series 1^2+2xx2^2+3^2+2xx 4^2+5^2+...

    Text Solution

    |

  16. sum(r=1)^n r (n-r +1) is equal to :

    Text Solution

    |

  17. The arithmetic mean between two numbers is A and the geometric mean is...

    Text Solution

    |

  18. If S(n)=1+(1)/(2)+(1)/(2^(2))+"..."+(1)/(2^(n-1)), then calculate the ...

    Text Solution

    |

  19. If a, b, c are positive real numbers, then the minimum value of a^(l...

    Text Solution

    |

  20. If an>1 for all n in N then log(a2) a1+log(a3) a2+.....log(a1)an has t...

    Text Solution

    |