Home
Class 12
MATHS
sum(r=1)^n r(n-r) is equal to :...

`sum_(r=1)^n` r(n-r) is equal to :

A

`1/6 n(n-1)(2n+1)`

B

`((n(n+1))/2)^2`

C

`(n^2 (n+1))/6`

D

`(n(n^2 -1))/6`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \sum_{r=1}^{n} r(n-r) \), we can follow these steps: ### Step 1: Expand the summation We start with the expression: \[ \sum_{r=1}^{n} r(n-r) \] This can be rewritten as: \[ \sum_{r=1}^{n} (nr - r^2) \] Now we can separate the summation: \[ = n \sum_{r=1}^{n} r - \sum_{r=1}^{n} r^2 \] ### Step 2: Use the formula for the sum of the first \( n \) natural numbers The formula for the sum of the first \( n \) natural numbers is: \[ \sum_{r=1}^{n} r = \frac{n(n+1)}{2} \] Substituting this into our expression gives: \[ = n \left(\frac{n(n+1)}{2}\right) - \sum_{r=1}^{n} r^2 \] ### Step 3: Use the formula for the sum of the squares of the first \( n \) natural numbers The formula for the sum of the squares of the first \( n \) natural numbers is: \[ \sum_{r=1}^{n} r^2 = \frac{n(n+1)(2n+1)}{6} \] Now substituting this into our expression, we have: \[ = n \left(\frac{n(n+1)}{2}\right) - \frac{n(n+1)(2n+1)}{6} \] ### Step 4: Combine the terms To combine these terms, we need a common denominator. The common denominator between 2 and 6 is 6: \[ = \frac{3n(n(n+1))}{6} - \frac{n(n+1)(2n+1)}{6} \] Now we can combine the fractions: \[ = \frac{3n(n(n+1)) - n(n+1)(2n+1)}{6} \] ### Step 5: Factor out common terms Notice that \( n(n+1) \) is common in both terms: \[ = \frac{n(n+1) \left(3n - (2n + 1)\right)}{6} \] Simplifying the expression inside the parentheses: \[ = \frac{n(n+1)(3n - 2n - 1)}{6} \] \[ = \frac{n(n+1)(n - 1)}{6} \] ### Final Result Thus, the result of the summation \( \sum_{r=1}^{n} r(n-r) \) is: \[ \frac{n(n+1)(n-1)}{6} \]
Promotional Banner

Topper's Solved these Questions

  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise LEVEL-2|34 Videos
  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise JEE MAIN & Advance ( ARCHIVE)|46 Videos
  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise JEE MAIN & Advance ( ARCHIVE)|46 Videos
  • REVISION TEST-2 JEE

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos
  • STRAIGHT LINES

    VMC MODULES ENGLISH|Exercise JEE Advanced Archive (State true or false: Q. 42)|1 Videos

Similar Questions

Explore conceptually related problems

sum_(r=1)^n r (n-r +1) is equal to :

If f(n)=sum_(r=1)^(n) r^(4) , then the value of sum_(r=1)^(n) r(n-r)^(3) is equal to

If sum_(r=1)^n I(r)=(3^n -1) , then sum_(r=1)^n 1/(I(r)) is equal to :

sum_(r=0)^m .^(n+r)C_n is equal to

Let S_n denote the sum of the cubes of the first n natural numbers and s_n denote the sum of the first n natural numbers. Then sum_(r=1)^n S_r/s_r is equal to

(sum_(r=1)^n r^4)/(sum_(r=1)^n r^2) is equal to

lim_(xrarr2)(sum_(r=1)^(n)x^r-sum_(r=1)^(n)2^r)/(x-2) is equal to

If I(r)=r(r^2-1) , then sum_(r=2)^n 1/(I(r)) is equal to

If n is an odd natural number, then sum_(r=0)^n (-1)^r/(nC_r) is equal to

If Delta_(r) = |(2^(r -1),((r +1)!)/((1 + 1//r)),2r),(a,b,c),(2^(n) -1,(n +1)! -1,n(n +1))| , then sum_(r =1)^(n) Delta_(r) is equal to

VMC MODULES ENGLISH-SEQUENCE AND SERIES -LEVEL-1
  1. If a ,b ,c are digits, then the rational number represented by odotc a...

    Text Solution

    |

  2. sum(r=1)^n (a^r +br) , a , b in R^+ is equal to :

    Text Solution

    |

  3. sum(r=1)^n r(n-r) is equal to :

    Text Solution

    |

  4. Value of 1+1/(1+2)+1/(1+2+3)+....+1/(1+2+3+....+n) is equal to

    Text Solution

    |

  5. If sum(r=1)^n I(r)=(3^n -1) , then sum(r=1)^n 1/(I(r)) is equal to :

    Text Solution

    |

  6. Let Sn denote the sum of the cubes of first n nastural numbers and sn ...

    Text Solution

    |

  7. If Sn=sum(r=1)^n(1+2+2^2+ .......+2^r)/(2^r), then Sn is equal to (a)2...

    Text Solution

    |

  8. If a > 1, b > 1, then the minimum value of logb a + loga b is

    Text Solution

    |

  9. Let tn =n.(n!) Then sum(n=1)^(15) tn is equal to

    Text Solution

    |

  10. A series whose n^(th) term is (n/x), then sum of r terms will be

    Text Solution

    |

  11. x gt0, then the sum of the series e^(-x)-e^(-2x)+e^(-3x)-... i s

    Text Solution

    |

  12. Find the sum up to 20 terms. 1+1/2(1+2)+1/3(1+2+3)+1/4(1+2+3+4)+

    Text Solution

    |

  13. Find the 1+2.2+3.2^2+…….+tn

    Text Solution

    |

  14. The sum of the first n terms of the series 1^2+2xx2^2+3^2+2xx 4^2+5^2+...

    Text Solution

    |

  15. sum(r=1)^n r (n-r +1) is equal to :

    Text Solution

    |

  16. The arithmetic mean between two numbers is A and the geometric mean is...

    Text Solution

    |

  17. If S(n)=1+(1)/(2)+(1)/(2^(2))+"..."+(1)/(2^(n-1)), then calculate the ...

    Text Solution

    |

  18. If a, b, c are positive real numbers, then the minimum value of a^(l...

    Text Solution

    |

  19. If an>1 for all n in N then log(a2) a1+log(a3) a2+.....log(a1)an has t...

    Text Solution

    |

  20. The least value of 2log100 a-loga 0.0001 , a >1

    Text Solution

    |