Home
Class 12
MATHS
Value of 1+1/(1+2)+1/(1+2+3)+....+1/(1+2...

Value of `1+1/(1+2)+1/(1+2+3)+....+1/(1+2+3+....+n)` is equal to

A

`(2n) /(n+1)`

B

`(3n)/(2n+1)`

C

`(4n)/(3n+1)`

D

`n/(n+1)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the series \( S = 1 + \frac{1}{1 + 2} + \frac{1}{1 + 2 + 3} + \ldots + \frac{1}{1 + 2 + 3 + \ldots + n} \), we can follow these steps: ### Step 1: Identify the general term The general term of the series can be expressed as: \[ T_n = \frac{1}{1 + 2 + 3 + \ldots + n} \] The sum of the first \( n \) natural numbers is given by the formula: \[ 1 + 2 + 3 + \ldots + n = \frac{n(n + 1)}{2} \] Thus, we can rewrite \( T_n \) as: \[ T_n = \frac{1}{\frac{n(n + 1)}{2}} = \frac{2}{n(n + 1)} \] ### Step 2: Write the series in terms of \( T_n \) Now we can express the entire series \( S \) as: \[ S = \sum_{n=1}^{n} T_n = \sum_{n=1}^{n} \frac{2}{n(n + 1)} \] ### Step 3: Simplify the summation We can simplify \( \frac{2}{n(n + 1)} \) using partial fractions: \[ \frac{2}{n(n + 1)} = \frac{2}{n} - \frac{2}{n + 1} \] Thus, the series becomes: \[ S = \sum_{n=1}^{n} \left( \frac{2}{n} - \frac{2}{n + 1} \right) \] ### Step 4: Expand the summation Expanding this summation gives: \[ S = \left( \frac{2}{1} - \frac{2}{2} \right) + \left( \frac{2}{2} - \frac{2}{3} \right) + \left( \frac{2}{3} - \frac{2}{4} \right) + \ldots + \left( \frac{2}{n} - \frac{2}{n + 1} \right) \] ### Step 5: Observe the cancellation Notice that this is a telescoping series. Most terms will cancel out: \[ S = 2 - \frac{2}{n + 1} \] ### Step 6: Final expression for \( S \) Thus, we can simplify \( S \) to: \[ S = 2 - \frac{2}{n + 1} = \frac{2(n + 1) - 2}{n + 1} = \frac{2n}{n + 1} \] ### Final Result The value of the series is: \[ S = \frac{2n}{n + 1} \]
Promotional Banner

Topper's Solved these Questions

  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise LEVEL-2|34 Videos
  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise JEE MAIN & Advance ( ARCHIVE)|46 Videos
  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise JEE MAIN & Advance ( ARCHIVE)|46 Videos
  • REVISION TEST-2 JEE

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos
  • STRAIGHT LINES

    VMC MODULES ENGLISH|Exercise JEE Advanced Archive (State true or false: Q. 42)|1 Videos

Similar Questions

Explore conceptually related problems

If ,Z_1,Z_2,Z_3,........Z_(n-1) are n^(th) roots of unity then the value of 1/(3-Z_1)+1/(3-Z_2)+..........+1/(3-Z_(n-1)) is equal to

1.1!+2.2!+3.3!+.......n.n! is equal to

If a_1,a_2 ...a_n are nth roots of unity then 1/(1-a_1) +1/(1-a_2)+1/(1-a_3)..+1/(1-a_n) is equal to

Value of (1+1/3)(1+1/(3^2))(1+1/(3^4))(1+1/(3^8))........oo is equal to a. 3 b. 6/5 c. 3/2 d. none of these

The value of lim_(n->oo) (1^2 . n+2^2.(n-1)+......+n^2 . 1)/(1^3+2^3+......+n^3) is equal to

Value of (1^2)/1+(1^2+2^2)/(1+2)+(1^2+2^2+3^2)/(1+2+3)+.... 'n' terms is equal to

lim_(nto oo) {(1)/(n+1)+(1)/(n+2)+(1)/(n+3)+...+(1)/(n+n)} is, equal to

Find the sum 1+1/(1+2)+1/(1+2+3)+..........+1/(1+2+3+.........+n)dot

For x in R , x ne0, 1, let f_(0)(x)=(1)/(1-x) and f_(n+1)(x)=f_(0)(f_(n)(x)),n=0,1,2….. Then the value of f_(100)(3)+f_(1)((2)/(3))+f_(2)((3)/(2)) is equal to

the value of cos^-1sqrt(2/3)-cos^-1 ((sqrt6+1)/(2sqrt3)) is equal to:

VMC MODULES ENGLISH-SEQUENCE AND SERIES -LEVEL-1
  1. sum(r=1)^n (a^r +br) , a , b in R^+ is equal to :

    Text Solution

    |

  2. sum(r=1)^n r(n-r) is equal to :

    Text Solution

    |

  3. Value of 1+1/(1+2)+1/(1+2+3)+....+1/(1+2+3+....+n) is equal to

    Text Solution

    |

  4. If sum(r=1)^n I(r)=(3^n -1) , then sum(r=1)^n 1/(I(r)) is equal to :

    Text Solution

    |

  5. Let Sn denote the sum of the cubes of first n nastural numbers and sn ...

    Text Solution

    |

  6. If Sn=sum(r=1)^n(1+2+2^2+ .......+2^r)/(2^r), then Sn is equal to (a)2...

    Text Solution

    |

  7. If a > 1, b > 1, then the minimum value of logb a + loga b is

    Text Solution

    |

  8. Let tn =n.(n!) Then sum(n=1)^(15) tn is equal to

    Text Solution

    |

  9. A series whose n^(th) term is (n/x), then sum of r terms will be

    Text Solution

    |

  10. x gt0, then the sum of the series e^(-x)-e^(-2x)+e^(-3x)-... i s

    Text Solution

    |

  11. Find the sum up to 20 terms. 1+1/2(1+2)+1/3(1+2+3)+1/4(1+2+3+4)+

    Text Solution

    |

  12. Find the 1+2.2+3.2^2+…….+tn

    Text Solution

    |

  13. The sum of the first n terms of the series 1^2+2xx2^2+3^2+2xx 4^2+5^2+...

    Text Solution

    |

  14. sum(r=1)^n r (n-r +1) is equal to :

    Text Solution

    |

  15. The arithmetic mean between two numbers is A and the geometric mean is...

    Text Solution

    |

  16. If S(n)=1+(1)/(2)+(1)/(2^(2))+"..."+(1)/(2^(n-1)), then calculate the ...

    Text Solution

    |

  17. If a, b, c are positive real numbers, then the minimum value of a^(l...

    Text Solution

    |

  18. If an>1 for all n in N then log(a2) a1+log(a3) a2+.....log(a1)an has t...

    Text Solution

    |

  19. The least value of 2log100 a-loga 0.0001 , a >1

    Text Solution

    |

  20. If in a series tn=n/((n+1)!) then sum(n=1)^20 tn is equal to :

    Text Solution

    |