Home
Class 12
MATHS
If sum(r=1)^n I(r)=(3^n -1) , then sum(r...

If `sum_(r=1)^n I(r)=(3^n -1)` , then `sum_(r=1)^n 1/(I(r))` is equal to :

A

`2(1-(1/3)^n)`

B

`(1-(1/3)^n)`

C

`3/4(1-(1/3)^n)`

D

`4/3(1-(1/3)^n)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the summation \( \sum_{r=1}^{n} \frac{1}{I(r)} \) given that \( \sum_{r=1}^{n} I(r) = 3^n - 1 \). ### Step-by-step Solution: 1. **Understanding the Given Summation**: We know that: \[ \sum_{r=1}^{n} I(r) = 3^n - 1 \] This implies that the series \( I(r) \) can be expressed in terms of a geometric progression (GP). 2. **Identifying the Terms of the Series**: We can assume that \( I(r) \) is of the form: \[ I(r) = 2 \cdot 3^{r-1} \] This is because the sum of a GP with first term \( a = 1 \) and common ratio \( r = 3 \) gives us: \[ S_n = a \frac{r^n - 1}{r - 1} = \frac{3^n - 1}{2} \] Multiplying through by 2 gives us \( 3^n - 1 \). 3. **Calculating \( \sum_{r=1}^{n} \frac{1}{I(r)} \)**: Now, we need to compute: \[ \sum_{r=1}^{n} \frac{1}{I(r)} = \sum_{r=1}^{n} \frac{1}{2 \cdot 3^{r-1}} = \frac{1}{2} \sum_{r=1}^{n} \frac{1}{3^{r-1}} \] The series \( \sum_{r=1}^{n} \frac{1}{3^{r-1}} \) is also a geometric series with first term \( 1 \) and common ratio \( \frac{1}{3} \). 4. **Using the Formula for the Sum of a GP**: The sum of the first \( n \) terms of a GP is given by: \[ S_n = a \frac{1 - r^n}{1 - r} \] Here, \( a = 1 \) and \( r = \frac{1}{3} \): \[ \sum_{r=1}^{n} \frac{1}{3^{r-1}} = \frac{1 - \left(\frac{1}{3}\right)^n}{1 - \frac{1}{3}} = \frac{1 - \frac{1}{3^n}}{\frac{2}{3}} = \frac{3}{2} \left(1 - \frac{1}{3^n}\right) \] 5. **Substituting Back**: Now substituting back into our equation: \[ \sum_{r=1}^{n} \frac{1}{I(r)} = \frac{1}{2} \cdot \frac{3}{2} \left(1 - \frac{1}{3^n}\right) = \frac{3}{4} \left(1 - \frac{1}{3^n}\right) \] 6. **Final Result**: Therefore, the final result is: \[ \sum_{r=1}^{n} \frac{1}{I(r)} = \frac{3}{4} \left(1 - \frac{1}{3^n}\right) \]
Promotional Banner

Topper's Solved these Questions

  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise LEVEL-2|34 Videos
  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise JEE MAIN & Advance ( ARCHIVE)|46 Videos
  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise JEE MAIN & Advance ( ARCHIVE)|46 Videos
  • REVISION TEST-2 JEE

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos
  • STRAIGHT LINES

    VMC MODULES ENGLISH|Exercise JEE Advanced Archive (State true or false: Q. 42)|1 Videos

Similar Questions

Explore conceptually related problems

If I(r)=r(r^2-1) , then sum_(r=2)^n 1/(I(r)) is equal to

sum_(r=1)^n r (n-r +1) is equal to :

sum_(r=1)^n r(n-r) is equal to :

sum_(r=1)^(n) 1/(log_(2^(r))4) is equal to

Let sum_(r=1)^(n) r^(6)=f(n)," then "sum_(n=1)^(n) (2r-1)^(6) is equal to

sum_(r=1)^n (r^2 - r-1)/((r+1)!) is equal to :

If sum_(r=1)^n T_r=(3^n-1), then find the sum of sum_(r=1)^n1/(T_r) .

If S_(r)= sum_(r=1)^(n)T_(1)=n(n+1)(n+2)(n+3) then sum_(r=1)^(10) 1/(T_(r)) is equal to

If f(n)=sum_(r=1)^(n) r^(4) , then the value of sum_(r=1)^(n) r(n-r)^(3) is equal to

If sum_(r=1)^n r=55 , F i nd sum_(r=1)^n r^3dot

VMC MODULES ENGLISH-SEQUENCE AND SERIES -LEVEL-1
  1. sum(r=1)^n r(n-r) is equal to :

    Text Solution

    |

  2. Value of 1+1/(1+2)+1/(1+2+3)+....+1/(1+2+3+....+n) is equal to

    Text Solution

    |

  3. If sum(r=1)^n I(r)=(3^n -1) , then sum(r=1)^n 1/(I(r)) is equal to :

    Text Solution

    |

  4. Let Sn denote the sum of the cubes of first n nastural numbers and sn ...

    Text Solution

    |

  5. If Sn=sum(r=1)^n(1+2+2^2+ .......+2^r)/(2^r), then Sn is equal to (a)2...

    Text Solution

    |

  6. If a > 1, b > 1, then the minimum value of logb a + loga b is

    Text Solution

    |

  7. Let tn =n.(n!) Then sum(n=1)^(15) tn is equal to

    Text Solution

    |

  8. A series whose n^(th) term is (n/x), then sum of r terms will be

    Text Solution

    |

  9. x gt0, then the sum of the series e^(-x)-e^(-2x)+e^(-3x)-... i s

    Text Solution

    |

  10. Find the sum up to 20 terms. 1+1/2(1+2)+1/3(1+2+3)+1/4(1+2+3+4)+

    Text Solution

    |

  11. Find the 1+2.2+3.2^2+…….+tn

    Text Solution

    |

  12. The sum of the first n terms of the series 1^2+2xx2^2+3^2+2xx 4^2+5^2+...

    Text Solution

    |

  13. sum(r=1)^n r (n-r +1) is equal to :

    Text Solution

    |

  14. The arithmetic mean between two numbers is A and the geometric mean is...

    Text Solution

    |

  15. If S(n)=1+(1)/(2)+(1)/(2^(2))+"..."+(1)/(2^(n-1)), then calculate the ...

    Text Solution

    |

  16. If a, b, c are positive real numbers, then the minimum value of a^(l...

    Text Solution

    |

  17. If an>1 for all n in N then log(a2) a1+log(a3) a2+.....log(a1)an has t...

    Text Solution

    |

  18. The least value of 2log100 a-loga 0.0001 , a >1

    Text Solution

    |

  19. If in a series tn=n/((n+1)!) then sum(n=1)^20 tn is equal to :

    Text Solution

    |

  20. Let f(n) = [1/2 + n/100] where [x] denote the integral part of x. Then...

    Text Solution

    |