Home
Class 12
MATHS
If a > 1, b > 1, then the minimum value ...

If `a > 1, b > 1,` then the minimum value of `log_b a + log_a b` is

A

0

B

1

C

2

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of \( \log_b a + \log_a b \) given that \( a > 1 \) and \( b > 1 \), we can follow these steps: ### Step 1: Rewrite the logarithmic expressions We can use the change of base formula for logarithms, which states that: \[ \log_b a = \frac{\log a}{\log b} \quad \text{and} \quad \log_a b = \frac{\log b}{\log a} \] Thus, we can rewrite the expression: \[ \log_b a + \log_a b = \frac{\log a}{\log b} + \frac{\log b}{\log a} \] ### Step 2: Apply the Arithmetic Mean-Geometric Mean Inequality (AM-GM) According to the AM-GM inequality, for any positive numbers \( x \) and \( y \): \[ \frac{x + y}{2} \geq \sqrt{xy} \] Let \( x = \frac{\log a}{\log b} \) and \( y = \frac{\log b}{\log a} \). Then we have: \[ \frac{\frac{\log a}{\log b} + \frac{\log b}{\log a}}{2} \geq \sqrt{\frac{\log a}{\log b} \cdot \frac{\log b}{\log a}} \] The right-hand side simplifies to: \[ \sqrt{1} = 1 \] Thus, we can write: \[ \frac{\log_b a + \log_a b}{2} \geq 1 \] ### Step 3: Multiply by 2 Multiplying both sides of the inequality by 2 gives: \[ \log_b a + \log_a b \geq 2 \] ### Step 4: Conclusion The minimum value of \( \log_b a + \log_a b \) is therefore: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise LEVEL-2|34 Videos
  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise JEE MAIN & Advance ( ARCHIVE)|46 Videos
  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise JEE MAIN & Advance ( ARCHIVE)|46 Videos
  • REVISION TEST-2 JEE

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos
  • STRAIGHT LINES

    VMC MODULES ENGLISH|Exercise JEE Advanced Archive (State true or false: Q. 42)|1 Videos

Similar Questions

Explore conceptually related problems

If a,b,c,d in R^(+)-{1} , then the minimum value of log_(d) a+ log_(c)b+log _(a)c+log_(b)d is

If a ,b ,c ,d in R^+-{1}, then the minimum value of (log)_d a+(log)_b d+(log)_a c+(log)_c b is (a) 4 (b) 2 (c) 1 (d)none of these

The value of log ab- log|b|=

If a,b, and c are positive and 9a+3b+c=90 , then the maximum value of (log a+log b+log c) is (base of the logarithm is 10)________.

If "log"_(a) ab = x, then the value of "log"_(b)ab, is

If a^4b^5=1 then the value of log_a(a^5b^4) equals

If a^4b^5=1 then the value of log_a(a^5b^4) equals

If a, b, c are positive real numbers, then the minimum value of a^(logb-logc)+b^(logc-loga)+c^(loga-logb) is

The value of a^((log_b(log_bx))/(log_b a)), is

If log_(sqrt8) b = 3 1/3 , then find the value of b.

VMC MODULES ENGLISH-SEQUENCE AND SERIES -LEVEL-1
  1. Let Sn denote the sum of the cubes of first n nastural numbers and sn ...

    Text Solution

    |

  2. If Sn=sum(r=1)^n(1+2+2^2+ .......+2^r)/(2^r), then Sn is equal to (a)2...

    Text Solution

    |

  3. If a > 1, b > 1, then the minimum value of logb a + loga b is

    Text Solution

    |

  4. Let tn =n.(n!) Then sum(n=1)^(15) tn is equal to

    Text Solution

    |

  5. A series whose n^(th) term is (n/x), then sum of r terms will be

    Text Solution

    |

  6. x gt0, then the sum of the series e^(-x)-e^(-2x)+e^(-3x)-... i s

    Text Solution

    |

  7. Find the sum up to 20 terms. 1+1/2(1+2)+1/3(1+2+3)+1/4(1+2+3+4)+

    Text Solution

    |

  8. Find the 1+2.2+3.2^2+…….+tn

    Text Solution

    |

  9. The sum of the first n terms of the series 1^2+2xx2^2+3^2+2xx 4^2+5^2+...

    Text Solution

    |

  10. sum(r=1)^n r (n-r +1) is equal to :

    Text Solution

    |

  11. The arithmetic mean between two numbers is A and the geometric mean is...

    Text Solution

    |

  12. If S(n)=1+(1)/(2)+(1)/(2^(2))+"..."+(1)/(2^(n-1)), then calculate the ...

    Text Solution

    |

  13. If a, b, c are positive real numbers, then the minimum value of a^(l...

    Text Solution

    |

  14. If an>1 for all n in N then log(a2) a1+log(a3) a2+.....log(a1)an has t...

    Text Solution

    |

  15. The least value of 2log100 a-loga 0.0001 , a >1

    Text Solution

    |

  16. If in a series tn=n/((n+1)!) then sum(n=1)^20 tn is equal to :

    Text Solution

    |

  17. Let f(n) = [1/2 + n/100] where [x] denote the integral part of x. Then...

    Text Solution

    |

  18. The value of sum(r=1)^n1/(sqrt(a+r x)+sqrt(a+(r-1)x)) is -

    Text Solution

    |

  19. Sum of the series 1+2^2x +3^2x^2 + 4^2x^3 …….to oo , |x| < 1 is :

    Text Solution

    |

  20. The sum of an infinite geometric series is 3. A series which is formed...

    Text Solution

    |