Home
Class 12
MATHS
x gt0, then the sum of the series e^(-x)...

`x gt0`, then the sum of the series `e^(-x)-e^(-2x)+e^(-3x)-...` i s

A

`1/(1-e^(-x))`

B

`1/(e^(-x)-1)`

C

`1/(1-e^(-x))`

D

`1/(1+e^x)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum of the series \( e^{-x} - e^{-2x} + e^{-3x} - e^{-4x} + \ldots \) for \( x > 0 \), we can follow these steps: ### Step 1: Define the series Let \( S \) be the sum of the series: \[ S = e^{-x} - e^{-2x} + e^{-3x} - e^{-4x} + \ldots \] ### Step 2: Group the terms We can rearrange the series to group the positive and negative terms: \[ S = (e^{-x} + e^{-3x} + e^{-5x} + \ldots) - (e^{-2x} + e^{-4x} + e^{-6x} + \ldots) \] ### Step 3: Identify the geometric series The first group \( e^{-x} + e^{-3x} + e^{-5x} + \ldots \) is a geometric series with the first term \( a = e^{-x} \) and common ratio \( r = e^{-2x} \). The second group \( e^{-2x} + e^{-4x} + e^{-6x} + \ldots \) is also a geometric series with the first term \( a = e^{-2x} \) and common ratio \( r = e^{-2x} \). ### Step 4: Calculate the sum of the geometric series The sum of an infinite geometric series is given by the formula: \[ \text{Sum} = \frac{a}{1 - r} \] For the first series: \[ \text{Sum}_1 = \frac{e^{-x}}{1 - e^{-2x}} \] For the second series: \[ \text{Sum}_2 = \frac{e^{-2x}}{1 - e^{-2x}} \] ### Step 5: Substitute back into the expression for \( S \) Now substituting these sums back into the expression for \( S \): \[ S = \frac{e^{-x}}{1 - e^{-2x}} - \frac{e^{-2x}}{1 - e^{-2x}} \] ### Step 6: Combine the fractions Since both terms have the same denominator, we can combine them: \[ S = \frac{e^{-x} - e^{-2x}}{1 - e^{-2x}} \] ### Step 7: Simplify the numerator Factoring the numerator: \[ S = \frac{e^{-x}(1 - e^{-x})}{1 - e^{-2x}} \] ### Step 8: Factor the denominator The denominator can be factored as: \[ 1 - e^{-2x} = (1 - e^{-x})(1 + e^{-x}) \] Thus, we can rewrite \( S \) as: \[ S = \frac{e^{-x}(1 - e^{-x})}{(1 - e^{-x})(1 + e^{-x})} \] ### Step 9: Cancel common factors We can cancel \( (1 - e^{-x}) \) from the numerator and denominator (as long as \( x > 0 \)): \[ S = \frac{e^{-x}}{1 + e^{-x}} \] ### Step 10: Final result Thus, the sum of the series is: \[ S = \frac{1}{e^{x} + 1} \]
Promotional Banner

Topper's Solved these Questions

  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise LEVEL-2|34 Videos
  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise JEE MAIN & Advance ( ARCHIVE)|46 Videos
  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise JEE MAIN & Advance ( ARCHIVE)|46 Videos
  • REVISION TEST-2 JEE

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos
  • STRAIGHT LINES

    VMC MODULES ENGLISH|Exercise JEE Advanced Archive (State true or false: Q. 42)|1 Videos

Similar Questions

Explore conceptually related problems

int (e^(x)dx)/(e^(2x)+4e^(x)+3)

Integrate the functions (e^(2x)-e^(-2x))/(e^(2x)+e^(-2x))

Integrate the functions (e^(2x)-e^(-2x))/(e^(2x)+e^(-2x))

Let x and a be positive real numbers Statement 1: The sum of theries 1+(log_(e)x)^(2)/(2!)+(log_(e)x)^(3)/(3!)+(log_(e)x)^(2)+…to infty is x Statement2: The sum of the series 1+(xlog_(e)a)+(x^(2))/(2!)(log_(e)x))^(2)+(x^(3))/(3!)(log_(e)a)^(3)/(3!)+to infty is a^(x)

int_(0)^(1)e^(2x)e^(e^(x) dx =)

Statement -1: The sum of the series (1)/(1!)+(2)/(2!)+(3)/(3!)+(4)/(4!)+..to infty is e Statement 2: The sum of the seies (1)/(1!)x+(2)/(2!)x^(2)+(3)/(3!)x^(3)+(4)/(4!)x^(4)..to infty is x e^(x)

The sum of the series x/(1!)+(2x^2)/(2!)+(3x^3)/(3!)+ is x e^x b. -x e^x c. x e^x-x d. x e^x+x

Find number of real roots of equation e^(4x) + e^(3x) - 4e^(2x) + e^(x) + 1 = 0 is

The coefficient of x^6 in series of e^(2x) is

The solution of the differential equation (e^x+e^(-x))dy-(e^x-e^(-x))dx =0 is

VMC MODULES ENGLISH-SEQUENCE AND SERIES -LEVEL-1
  1. Let tn =n.(n!) Then sum(n=1)^(15) tn is equal to

    Text Solution

    |

  2. A series whose n^(th) term is (n/x), then sum of r terms will be

    Text Solution

    |

  3. x gt0, then the sum of the series e^(-x)-e^(-2x)+e^(-3x)-... i s

    Text Solution

    |

  4. Find the sum up to 20 terms. 1+1/2(1+2)+1/3(1+2+3)+1/4(1+2+3+4)+

    Text Solution

    |

  5. Find the 1+2.2+3.2^2+…….+tn

    Text Solution

    |

  6. The sum of the first n terms of the series 1^2+2xx2^2+3^2+2xx 4^2+5^2+...

    Text Solution

    |

  7. sum(r=1)^n r (n-r +1) is equal to :

    Text Solution

    |

  8. The arithmetic mean between two numbers is A and the geometric mean is...

    Text Solution

    |

  9. If S(n)=1+(1)/(2)+(1)/(2^(2))+"..."+(1)/(2^(n-1)), then calculate the ...

    Text Solution

    |

  10. If a, b, c are positive real numbers, then the minimum value of a^(l...

    Text Solution

    |

  11. If an>1 for all n in N then log(a2) a1+log(a3) a2+.....log(a1)an has t...

    Text Solution

    |

  12. The least value of 2log100 a-loga 0.0001 , a >1

    Text Solution

    |

  13. If in a series tn=n/((n+1)!) then sum(n=1)^20 tn is equal to :

    Text Solution

    |

  14. Let f(n) = [1/2 + n/100] where [x] denote the integral part of x. Then...

    Text Solution

    |

  15. The value of sum(r=1)^n1/(sqrt(a+r x)+sqrt(a+(r-1)x)) is -

    Text Solution

    |

  16. Sum of the series 1+2^2x +3^2x^2 + 4^2x^3 …….to oo , |x| < 1 is :

    Text Solution

    |

  17. The sum of an infinite geometric series is 3. A series which is formed...

    Text Solution

    |

  18. if r>1 and x=a+a/r+a/r^2+...............oo , y=b-b/r+b/r^2-..............

    Text Solution

    |

  19. The odd value of n for which 704+1/2(704)+… upto n terms = 1984-1/2(1...

    Text Solution

    |

  20. If every even term of a series is a times the term before it and every...

    Text Solution

    |