Home
Class 12
MATHS
sum(r=1)^n r (n-r +1) is equal to :...

`sum_(r=1)^n r (n-r +1)` is equal to :

A

`(n(n^2 -1))/6`

B

`(n(n+1)(n+2))/6`

C

`(n(n^2-1))/2`

D

`(n(n+1)(n+2))/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \sum_{r=1}^{n} r(n - r + 1) \), we can follow these steps: ### Step 1: Expand the expression inside the summation We start by expanding the term \( r(n - r + 1) \): \[ r(n - r + 1) = rn - r^2 + r \] Thus, we can rewrite the summation as: \[ \sum_{r=1}^{n} r(n - r + 1) = \sum_{r=1}^{n} (rn - r^2 + r) \] ### Step 2: Split the summation Now we can split the summation into three separate sums: \[ \sum_{r=1}^{n} (rn - r^2 + r) = \sum_{r=1}^{n} rn - \sum_{r=1}^{n} r^2 + \sum_{r=1}^{n} r \] ### Step 3: Calculate each summation 1. **Calculate \( \sum_{r=1}^{n} rn \)**: Since \( n \) is a constant with respect to \( r \), we can factor it out: \[ \sum_{r=1}^{n} rn = n \sum_{r=1}^{n} r = n \cdot \frac{n(n + 1)}{2} \] 2. **Calculate \( \sum_{r=1}^{n} r^2 \)**: The formula for the sum of squares of the first \( n \) natural numbers is: \[ \sum_{r=1}^{n} r^2 = \frac{n(n + 1)(2n + 1)}{6} \] 3. **Calculate \( \sum_{r=1}^{n} r \)**: The formula for the sum of the first \( n \) natural numbers is: \[ \sum_{r=1}^{n} r = \frac{n(n + 1)}{2} \] ### Step 4: Substitute back into the equation Now substituting these results back into our expression: \[ \sum_{r=1}^{n} r(n - r + 1) = n \cdot \frac{n(n + 1)}{2} - \frac{n(n + 1)(2n + 1)}{6} + \frac{n(n + 1)}{2} \] ### Step 5: Combine the terms Now we can combine the terms: \[ = \frac{n(n + 1)}{2} + \frac{n(n + 1)}{2} - \frac{n(n + 1)(2n + 1)}{6} \] This simplifies to: \[ = n(n + 1) - \frac{n(n + 1)(2n + 1)}{6} \] ### Step 6: Find a common denominator To combine these terms, we need a common denominator: \[ = \frac{6n(n + 1)}{6} - \frac{n(n + 1)(2n + 1)}{6} \] \[ = \frac{6n(n + 1) - n(n + 1)(2n + 1)}{6} \] ### Step 7: Simplify the numerator Now we can simplify the numerator: \[ = \frac{n(n + 1)(6 - (2n + 1))}{6} \] \[ = \frac{n(n + 1)(5 - 2n)}{6} \] ### Final Result Thus, the final answer is: \[ \sum_{r=1}^{n} r(n - r + 1) = \frac{n(n + 1)(5 - 2n)}{6} \]
Promotional Banner

Topper's Solved these Questions

  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise LEVEL-2|34 Videos
  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise JEE MAIN & Advance ( ARCHIVE)|46 Videos
  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise JEE MAIN & Advance ( ARCHIVE)|46 Videos
  • REVISION TEST-2 JEE

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos
  • STRAIGHT LINES

    VMC MODULES ENGLISH|Exercise JEE Advanced Archive (State true or false: Q. 42)|1 Videos

Similar Questions

Explore conceptually related problems

sum_(r=1)^n r(n-r) is equal to :

If f(n)=sum_(r=1)^(n) r^(4) , then the value of sum_(r=1)^(n) r(n-r)^(3) is equal to

The sum sum_(r=0)^n (r+1) (C_r)^2 is equal to :

If sum_(r=1)^n I(r)=(3^n -1) , then sum_(r=1)^n 1/(I(r)) is equal to :

The value of lim_(nto oo)(1)/(2) sum_(r-1)^(n) ((r)/(n+r)) is equal to

If n is an odd natural number, then sum_(r=0)^n (-1)^r/(nC_r) is equal to

sum_(r=1)^(n) r^(2)-sum_(r=1)^(n) sum_(r=1)^(n) is equal to

Let sum_(r=1)^(n) r^(6)=f(n)," then "sum_(n=1)^(n) (2r-1)^(6) is equal to

lim_(xrarr2)(sum_(r=1)^(n)x^r-sum_(r=1)^(n)2^r)/(x-2) is equal to

If I(r)=r(r^2-1) , then sum_(r=2)^n 1/(I(r)) is equal to

VMC MODULES ENGLISH-SEQUENCE AND SERIES -LEVEL-1
  1. Find the 1+2.2+3.2^2+…….+tn

    Text Solution

    |

  2. The sum of the first n terms of the series 1^2+2xx2^2+3^2+2xx 4^2+5^2+...

    Text Solution

    |

  3. sum(r=1)^n r (n-r +1) is equal to :

    Text Solution

    |

  4. The arithmetic mean between two numbers is A and the geometric mean is...

    Text Solution

    |

  5. If S(n)=1+(1)/(2)+(1)/(2^(2))+"..."+(1)/(2^(n-1)), then calculate the ...

    Text Solution

    |

  6. If a, b, c are positive real numbers, then the minimum value of a^(l...

    Text Solution

    |

  7. If an>1 for all n in N then log(a2) a1+log(a3) a2+.....log(a1)an has t...

    Text Solution

    |

  8. The least value of 2log100 a-loga 0.0001 , a >1

    Text Solution

    |

  9. If in a series tn=n/((n+1)!) then sum(n=1)^20 tn is equal to :

    Text Solution

    |

  10. Let f(n) = [1/2 + n/100] where [x] denote the integral part of x. Then...

    Text Solution

    |

  11. The value of sum(r=1)^n1/(sqrt(a+r x)+sqrt(a+(r-1)x)) is -

    Text Solution

    |

  12. Sum of the series 1+2^2x +3^2x^2 + 4^2x^3 …….to oo , |x| < 1 is :

    Text Solution

    |

  13. The sum of an infinite geometric series is 3. A series which is formed...

    Text Solution

    |

  14. if r>1 and x=a+a/r+a/r^2+...............oo , y=b-b/r+b/r^2-..............

    Text Solution

    |

  15. The odd value of n for which 704+1/2(704)+… upto n terms = 1984-1/2(1...

    Text Solution

    |

  16. If every even term of a series is a times the term before it and every...

    Text Solution

    |

  17. If a^x=b^y=c^z and a,b,c are in G.P. show that 1/x,1/y,1/z are in A.P.

    Text Solution

    |

  18. If a ,b ,c are in G.P. and x ,y are the arithmetic means of a ,ba n db...

    Text Solution

    |

  19. If ai > 0 for i=1,2,…., n and a1 a2 … a(n=1) , then minimum value o...

    Text Solution

    |

  20. Suppose a,b, c are in A.P. and a^(2) , b^(2),c^(2) are in G.P. if a lt...

    Text Solution

    |