Home
Class 12
MATHS
If a, b, c are positive real numbers, th...

If a, b, c are positive real numbers, then the minimum value of
`a^(logb-logc)+b^(logc-loga)+c^(loga-logb)`is

A

3

B

1

C

9

D

16

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of the expression \( a^{(\log b - \log c)} + b^{(\log c - \log a)} + c^{(\log a - \log b)} \), we can apply the Arithmetic Mean-Geometric Mean (AM-GM) inequality. Here’s a step-by-step solution: ### Step 1: Apply AM-GM Inequality Using the AM-GM inequality, we know that for any positive real numbers \( x_1, x_2, \ldots, x_n \): \[ \frac{x_1 + x_2 + \ldots + x_n}{n} \geq \sqrt[n]{x_1 x_2 \ldots x_n} \] In our case, we can apply this to the three terms in our expression. ### Step 2: Set Up the Expression Let: \[ x_1 = a^{(\log b - \log c)}, \quad x_2 = b^{(\log c - \log a)}, \quad x_3 = c^{(\log a - \log b)} \] Then, by AM-GM: \[ \frac{x_1 + x_2 + x_3}{3} \geq \sqrt[3]{x_1 x_2 x_3} \] ### Step 3: Calculate the Product Now, we need to calculate the product \( x_1 x_2 x_3 \): \[ x_1 x_2 x_3 = a^{(\log b - \log c)} \cdot b^{(\log c - \log a)} \cdot c^{(\log a - \log b)} \] ### Step 4: Simplify the Product Using properties of logarithms: \[ x_1 x_2 x_3 = a^{\log b - \log c} \cdot b^{\log c - \log a} \cdot c^{\log a - \log b} \] This can be rewritten as: \[ = \frac{a^{\log b}}{a^{\log c}} \cdot \frac{b^{\log c}}{b^{\log a}} \cdot \frac{c^{\log a}}{c^{\log b}} \] This simplifies to: \[ = \frac{a^{\log b} \cdot b^{\log c} \cdot c^{\log a}}{a^{\log c} \cdot b^{\log a} \cdot c^{\log b}} \] ### Step 5: Take Logarithm Taking logarithm on both sides: \[ \log(x_1 x_2 x_3) = \log(a^{\log b}) + \log(b^{\log c}) + \log(c^{\log a}) - \left(\log(a^{\log c}) + \log(b^{\log a}) + \log(c^{\log b})\right) \] This will lead to cancellation of terms, ultimately resulting in: \[ \log(x_1 x_2 x_3) = 0 \] Thus, \( x_1 x_2 x_3 = 1 \). ### Step 6: Apply AM-GM Result Now substituting back into the AM-GM inequality: \[ \frac{x_1 + x_2 + x_3}{3} \geq \sqrt[3]{1} = 1 \] This implies: \[ x_1 + x_2 + x_3 \geq 3 \] ### Conclusion The minimum value of \( a^{(\log b - \log c)} + b^{(\log c - \log a)} + c^{(\log a - \log b)} \) is therefore: \[ \boxed{3} \]
Promotional Banner

Topper's Solved these Questions

  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise LEVEL-2|34 Videos
  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise JEE MAIN & Advance ( ARCHIVE)|46 Videos
  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise JEE MAIN & Advance ( ARCHIVE)|46 Videos
  • REVISION TEST-2 JEE

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos
  • STRAIGHT LINES

    VMC MODULES ENGLISH|Exercise JEE Advanced Archive (State true or false: Q. 42)|1 Videos

Similar Questions

Explore conceptually related problems

If a,b,c are distinct positive real numbers, then

If a, b, c are positive real numbers, then a^("log"b-"log"c) xx b^("log"c-"log"a) xx c^("log"a - "log"b)

Let a, b, c be positive numbers, then the minimum value of (a^4+b^4+c^2)/(abc)

Let a, b, c be positive numbers, then the minimum value of (a^4+b^4+c^2)/(abc)

If a,b,c are positive real numbers and 2a+b+3c=1 , then the maximum value of a^(4)b^(2)c^(2) is equal to

If a,b,c are three positive real numbers then the minimum value of the expression (b+c)/a+(c+a)/b+(a+b)/c is

If a, b,c are three positive real numbers , then find minimum value of (a^(2)+1)/(b+c)+(b^(2)+1)/(c+a)+(c^(2)+1)/(a+b)

If a,b,c are positive real numbers such that a + b +c=18, find the maximum value of a^2b^3c^4

If a, b, c are positive real number such that lamba abc is the minimum value of a(b^(2)+c^(2))+b(c^(2)+a^(2))+c(a^(2)+b^(2)) , then lambda =

If a ,b ,a n dc are positive and 9a+3b+c=90 , then the maximum value of (loga+logb+logc) is (base of the logarithm is 10).

VMC MODULES ENGLISH-SEQUENCE AND SERIES -LEVEL-1
  1. The arithmetic mean between two numbers is A and the geometric mean is...

    Text Solution

    |

  2. If S(n)=1+(1)/(2)+(1)/(2^(2))+"..."+(1)/(2^(n-1)), then calculate the ...

    Text Solution

    |

  3. If a, b, c are positive real numbers, then the minimum value of a^(l...

    Text Solution

    |

  4. If an>1 for all n in N then log(a2) a1+log(a3) a2+.....log(a1)an has t...

    Text Solution

    |

  5. The least value of 2log100 a-loga 0.0001 , a >1

    Text Solution

    |

  6. If in a series tn=n/((n+1)!) then sum(n=1)^20 tn is equal to :

    Text Solution

    |

  7. Let f(n) = [1/2 + n/100] where [x] denote the integral part of x. Then...

    Text Solution

    |

  8. The value of sum(r=1)^n1/(sqrt(a+r x)+sqrt(a+(r-1)x)) is -

    Text Solution

    |

  9. Sum of the series 1+2^2x +3^2x^2 + 4^2x^3 …….to oo , |x| < 1 is :

    Text Solution

    |

  10. The sum of an infinite geometric series is 3. A series which is formed...

    Text Solution

    |

  11. if r>1 and x=a+a/r+a/r^2+...............oo , y=b-b/r+b/r^2-..............

    Text Solution

    |

  12. The odd value of n for which 704+1/2(704)+… upto n terms = 1984-1/2(1...

    Text Solution

    |

  13. If every even term of a series is a times the term before it and every...

    Text Solution

    |

  14. If a^x=b^y=c^z and a,b,c are in G.P. show that 1/x,1/y,1/z are in A.P.

    Text Solution

    |

  15. If a ,b ,c are in G.P. and x ,y are the arithmetic means of a ,ba n db...

    Text Solution

    |

  16. If ai > 0 for i=1,2,…., n and a1 a2 … a(n=1) , then minimum value o...

    Text Solution

    |

  17. Suppose a,b, c are in A.P. and a^(2) , b^(2),c^(2) are in G.P. if a lt...

    Text Solution

    |

  18. One side of a equilateral triangle is 24 cm. The mid-points of its sid...

    Text Solution

    |

  19. The sum to infinity of the series 1+2(1-(1)/(n))+3(1-(1)/(n))^(2)+ ....

    Text Solution

    |

  20. Let an be the nth term of a G.P. of positive numbers. Let sum(n=1)^(10...

    Text Solution

    |