Home
Class 12
MATHS
If an>1 for all n in N then log(a2) a1+l...

If `a_n>1` for all `n in N` then `log_(a_2) a_1+log_(a_3) a_2+.....log_(a_1)a_n` has the minimum value of

A

1

B

2

C

0

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of the expression \( \log_{a_2} a_1 + \log_{a_3} a_2 + \ldots + \log_{a_n} a_1 \), we can follow these steps: ### Step 1: Rewrite the logarithmic terms We can use the change of base formula for logarithms, which states that \( \log_b a = \frac{\log a}{\log b} \). Therefore, we can rewrite each term in the sum: \[ \log_{a_2} a_1 = \frac{\log a_1}{\log a_2}, \quad \log_{a_3} a_2 = \frac{\log a_2}{\log a_3}, \quad \ldots, \quad \log_{a_n} a_1 = \frac{\log a_1}{\log a_n} \] Thus, the entire expression can be rewritten as: \[ \frac{\log a_1}{\log a_2} + \frac{\log a_2}{\log a_3} + \ldots + \frac{\log a_n}{\log a_1} \] ### Step 2: Define the sum Let \( S = \frac{\log a_1}{\log a_2} + \frac{\log a_2}{\log a_3} + \ldots + \frac{\log a_n}{\log a_1} \). ### Step 3: Apply the AM-GM Inequality We can apply the Arithmetic Mean-Geometric Mean (AM-GM) inequality to the terms in \( S \): \[ \frac{\frac{\log a_1}{\log a_2} + \frac{\log a_2}{\log a_3} + \ldots + \frac{\log a_n}{\log a_1}}{n} \geq \sqrt[n]{\frac{\log a_1}{\log a_2} \cdot \frac{\log a_2}{\log a_3} \cdots \frac{\log a_n}{\log a_1}} \] ### Step 4: Simplify the product Notice that the product simplifies as follows: \[ \frac{\log a_1}{\log a_2} \cdot \frac{\log a_2}{\log a_3} \cdots \frac{\log a_n}{\log a_1} = \frac{\log a_1}{\log a_1} = 1 \] ### Step 5: Conclude the inequality Thus, we have: \[ \frac{S}{n} \geq 1 \implies S \geq n \] ### Step 6: Determine the minimum value The minimum value of \( S \) occurs when all the terms are equal, which happens when \( a_1 = a_2 = a_3 = \ldots = a_n \). Therefore, the minimum value of the expression is: \[ \boxed{n} \]
Promotional Banner

Topper's Solved these Questions

  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise LEVEL-2|34 Videos
  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise JEE MAIN & Advance ( ARCHIVE)|46 Videos
  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise JEE MAIN & Advance ( ARCHIVE)|46 Videos
  • REVISION TEST-2 JEE

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos
  • STRAIGHT LINES

    VMC MODULES ENGLISH|Exercise JEE Advanced Archive (State true or false: Q. 42)|1 Videos

Similar Questions

Explore conceptually related problems

If a_1, a_2, a_3,.....a_n are in H.P. and a_1 a_2+a_2 a_3+a_3 a_4+.......a_(n-1) a_n=ka_1 a_n , then k is equal to

If a_i > 0 for i=1,2,…., n and a_1 a_2 … a_(n=1) , then minimum value of (1+a_1) (1+a_2) ….. (1+a_n) is :

Let a_1=0 and a_1,a_2,a_3 …. , a_n be real numbers such that |a_i|=|a_(i-1) + 1| for all I then the A.M. Of the number a_1,a_2 ,a_3 …., a_n has the value A where : (a) A lt -1/2 (b) A lt -1 (c) A ge -1/2 (d) A=-2

If n is a natural number such that n=P_1^(a_1)P_2^(a_2)P_3^(a_3)...P_k^(a_k) where p_1,p_2,...p_k are distinct primes then minimum value of log n is:

If a_1, a_2,...... ,a_n >0, then prove that (a_1)/(a_2)+(a_2)/(a_3)+(a_3)/(a_4)+.....+(a_(n-1))/(a_n)+(a_n)/(a_1)> n

If a_1,a_2 ...a_n are nth roots of unity then 1/(1-a_1) +1/(1-a_2)+1/(1-a_3)..+1/(1-a_n) is equal to

cIf a_1,a_2,a_3,..,a_n in R then (x-a_1)^2+(x-a_2)^2+....+(x-a_n)^2 assumes its least value at x=

Let a_1,a_2,.....,a_n be fixed real numbers and define a function f(x) = (x-a_1) (x-a_2).....(x-a_n) . What is (lim)_(x->a_1)f(x) ? For some a!=a_1,a_2,.....,a_n , compute (lim)_(x->a)f(x)

If a_1, a_2, ,a_n are in H.P., then (a_1)/(a_2+a_3++a_n),(a_2)/(a_1+a_3++a_n), ,(a_n)/(a_1+a_2++a_(n-1)) are in a. A.P b. G.P. c. H.P. d. none of these

A sequence of number a_1, a_2, a_3,…..,a_n is generated by the rule a_(n+1) = 2a_(n) . If a_(7) - a_(6) = 96 , then what is the value of a_(7) ?

VMC MODULES ENGLISH-SEQUENCE AND SERIES -LEVEL-1
  1. If S(n)=1+(1)/(2)+(1)/(2^(2))+"..."+(1)/(2^(n-1)), then calculate the ...

    Text Solution

    |

  2. If a, b, c are positive real numbers, then the minimum value of a^(l...

    Text Solution

    |

  3. If an>1 for all n in N then log(a2) a1+log(a3) a2+.....log(a1)an has t...

    Text Solution

    |

  4. The least value of 2log100 a-loga 0.0001 , a >1

    Text Solution

    |

  5. If in a series tn=n/((n+1)!) then sum(n=1)^20 tn is equal to :

    Text Solution

    |

  6. Let f(n) = [1/2 + n/100] where [x] denote the integral part of x. Then...

    Text Solution

    |

  7. The value of sum(r=1)^n1/(sqrt(a+r x)+sqrt(a+(r-1)x)) is -

    Text Solution

    |

  8. Sum of the series 1+2^2x +3^2x^2 + 4^2x^3 …….to oo , |x| < 1 is :

    Text Solution

    |

  9. The sum of an infinite geometric series is 3. A series which is formed...

    Text Solution

    |

  10. if r>1 and x=a+a/r+a/r^2+...............oo , y=b-b/r+b/r^2-..............

    Text Solution

    |

  11. The odd value of n for which 704+1/2(704)+… upto n terms = 1984-1/2(1...

    Text Solution

    |

  12. If every even term of a series is a times the term before it and every...

    Text Solution

    |

  13. If a^x=b^y=c^z and a,b,c are in G.P. show that 1/x,1/y,1/z are in A.P.

    Text Solution

    |

  14. If a ,b ,c are in G.P. and x ,y are the arithmetic means of a ,ba n db...

    Text Solution

    |

  15. If ai > 0 for i=1,2,…., n and a1 a2 … a(n=1) , then minimum value o...

    Text Solution

    |

  16. Suppose a,b, c are in A.P. and a^(2) , b^(2),c^(2) are in G.P. if a lt...

    Text Solution

    |

  17. One side of a equilateral triangle is 24 cm. The mid-points of its sid...

    Text Solution

    |

  18. The sum to infinity of the series 1+2(1-(1)/(n))+3(1-(1)/(n))^(2)+ ....

    Text Solution

    |

  19. Let an be the nth term of a G.P. of positive numbers. Let sum(n=1)^(10...

    Text Solution

    |

  20. The sum of the series (1 2/3)^(2) + (2 1/3)^(2) + 3^2 + (3 2/3)^(2) ...

    Text Solution

    |