Home
Class 12
MATHS
If in a series tn=n/((n+1)!) then sum(n...

If in a series `t_n=n/((n+1)!)` then `sum_(n=1)^20 t_n` is equal to :

A

`(20 !-1)/(20!)`

B

`(21!-1)/(21!)`

C

`(19!-1)/(20!)`

D

`(21!-1)/(20!)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the sum of the series defined by the term \( t_n = \frac{n}{(n+1)!} \) from \( n = 1 \) to \( n = 20 \). ### Step-by-Step Solution: 1. **Define the term**: \[ t_n = \frac{n}{(n+1)!} \] 2. **Rewrite the term**: We can rewrite \( t_n \) as: \[ t_n = \frac{n + 1 - 1}{(n + 1)!} = \frac{n + 1}{(n + 1)!} - \frac{1}{(n + 1)!} \] This simplifies to: \[ t_n = \frac{1}{n!} - \frac{1}{(n + 1)!} \] 3. **Set up the summation**: We need to find: \[ S = \sum_{n=1}^{20} t_n = \sum_{n=1}^{20} \left( \frac{1}{n!} - \frac{1}{(n + 1)!} \right) \] 4. **Recognize the telescoping series**: The series is telescoping, which means that most terms will cancel out: \[ S = \left( \frac{1}{1!} - \frac{1}{2!} \right) + \left( \frac{1}{2!} - \frac{1}{3!} \right) + \left( \frac{1}{3!} - \frac{1}{4!} \right) + \ldots + \left( \frac{1}{20!} - \frac{1}{21!} \right) \] 5. **Simplify the sum**: When we add these terms, we see that all intermediate terms cancel out: \[ S = \frac{1}{1!} - \frac{1}{21!} \] Thus, we have: \[ S = 1 - \frac{1}{21!} \] 6. **Final result**: Therefore, the sum \( \sum_{n=1}^{20} t_n \) is: \[ S = 1 - \frac{1}{21!} \] ### Final Answer: \[ \sum_{n=1}^{20} t_n = 1 - \frac{1}{21!} \]
Promotional Banner

Topper's Solved these Questions

  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise LEVEL-2|34 Videos
  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise JEE MAIN & Advance ( ARCHIVE)|46 Videos
  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise JEE MAIN & Advance ( ARCHIVE)|46 Videos
  • REVISION TEST-2 JEE

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos
  • STRAIGHT LINES

    VMC MODULES ENGLISH|Exercise JEE Advanced Archive (State true or false: Q. 42)|1 Videos

Similar Questions

Explore conceptually related problems

Let t_n =n.(n!) Then sum_(n=1)^(15) t_n is equal to

sum_(i=1)^(n) sum_(i=1)^(n) i is equal to

sum_(n=1)^7(n(n+1)(2n+1))/4 is equal to

If S_(r)= sum_(r=1)^(n)T_(1)=n(n+1)(n+2)(n+3) then sum_(r=1)^(10) 1/(T_(r)) is equal to

sum_(n=1)^(oo) ((Inx)^(n))/(n!) is equal to

Let a_(n)=int_(0)^(pi//2)(1-sint )^(n) sin 2t, then lim_(n to oo)sum_(n=1)^(n)(a_(n))/(n) is equal to

sum_(r=1)^(n) r^(2)-sum_(r=1)^(n) sum_(r=1)^(n) is equal to

Let sum_(r=1)^(n) r^(6)=f(n)," then "sum_(n=1)^(n) (2r-1)^(6) is equal to

If S_n=sum_(k=1)^n a_k and lim_(n->oo)a_n=a , then lim_(n->oo)(S_(n+1)-S_n)/sqrt(sum_(k=1)^n k) is equal to

The sum sum_(n=1)^oo tan^(-1)(3/(n^2+n-1)) is equal to

VMC MODULES ENGLISH-SEQUENCE AND SERIES -LEVEL-1
  1. If an>1 for all n in N then log(a2) a1+log(a3) a2+.....log(a1)an has t...

    Text Solution

    |

  2. The least value of 2log100 a-loga 0.0001 , a >1

    Text Solution

    |

  3. If in a series tn=n/((n+1)!) then sum(n=1)^20 tn is equal to :

    Text Solution

    |

  4. Let f(n) = [1/2 + n/100] where [x] denote the integral part of x. Then...

    Text Solution

    |

  5. The value of sum(r=1)^n1/(sqrt(a+r x)+sqrt(a+(r-1)x)) is -

    Text Solution

    |

  6. Sum of the series 1+2^2x +3^2x^2 + 4^2x^3 …….to oo , |x| < 1 is :

    Text Solution

    |

  7. The sum of an infinite geometric series is 3. A series which is formed...

    Text Solution

    |

  8. if r>1 and x=a+a/r+a/r^2+...............oo , y=b-b/r+b/r^2-..............

    Text Solution

    |

  9. The odd value of n for which 704+1/2(704)+… upto n terms = 1984-1/2(1...

    Text Solution

    |

  10. If every even term of a series is a times the term before it and every...

    Text Solution

    |

  11. If a^x=b^y=c^z and a,b,c are in G.P. show that 1/x,1/y,1/z are in A.P.

    Text Solution

    |

  12. If a ,b ,c are in G.P. and x ,y are the arithmetic means of a ,ba n db...

    Text Solution

    |

  13. If ai > 0 for i=1,2,…., n and a1 a2 … a(n=1) , then minimum value o...

    Text Solution

    |

  14. Suppose a,b, c are in A.P. and a^(2) , b^(2),c^(2) are in G.P. if a lt...

    Text Solution

    |

  15. One side of a equilateral triangle is 24 cm. The mid-points of its sid...

    Text Solution

    |

  16. The sum to infinity of the series 1+2(1-(1)/(n))+3(1-(1)/(n))^(2)+ ....

    Text Solution

    |

  17. Let an be the nth term of a G.P. of positive numbers. Let sum(n=1)^(10...

    Text Solution

    |

  18. The sum of the series (1 2/3)^(2) + (2 1/3)^(2) + 3^2 + (3 2/3)^(2) ...

    Text Solution

    |

  19. The roots of equation x^2+2(a-3)x+9=0 lie between -6 and 1 and 2, h1, ...

    Text Solution

    |

  20. If a,b,c are real numbers such that 3(a^(2)+b^(2)+c^(2)+1)=2(a+b+c+ab...

    Text Solution

    |