Home
Class 12
MATHS
if (1+3+5+7+....(2p-1))+(1+3+5+...+(2q-1...

if `(1+3+5+7+....(2p-1))+(1+3+5+...+(2q-1)) =1+3+5+...+(2r -1),` then least possible value of `p+q+r `(Given `p>5`) is:

A

24

B

32

C

27

D

25

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given equation: \[ (1 + 3 + 5 + \ldots + (2p - 1)) + (1 + 3 + 5 + \ldots + (2q - 1)) = 1 + 3 + 5 + \ldots + (2r - 1) \] ### Step 1: Understand the series The series \(1 + 3 + 5 + \ldots + (2n - 1)\) represents the sum of the first \(n\) odd numbers. The formula for the sum of the first \(n\) odd numbers is: \[ S_n = n^2 \] ### Step 2: Apply the formula to each series Using the formula, we can express each part of the equation: - The first series: \(1 + 3 + 5 + \ldots + (2p - 1) = p^2\) - The second series: \(1 + 3 + 5 + \ldots + (2q - 1) = q^2\) - The right-hand side series: \(1 + 3 + 5 + \ldots + (2r - 1) = r^2\) ### Step 3: Rewrite the equation Substituting these sums into the original equation gives: \[ p^2 + q^2 = r^2 \] ### Step 4: Rearranging the equation We can rearrange this equation to find a relationship between \(p\), \(q\), and \(r\): \[ p^2 + q^2 = r^2 \] ### Step 5: Identify the conditions We are given the condition \(p > 5\). To minimize \(p + q + r\), we can start by assuming the smallest possible value for \(p\) that satisfies this condition, which is \(p = 6\). ### Step 6: Substitute \(p = 6\) into the equation Substituting \(p = 6\) into the equation: \[ 6^2 + q^2 = r^2 \] This simplifies to: \[ 36 + q^2 = r^2 \] ### Step 7: Rearranging to find \(r\) Rearranging gives: \[ r^2 - q^2 = 36 \] This can be factored as: \[ (r - q)(r + q) = 36 \] ### Step 8: Find pairs \((r - q)\) and \((r + q)\) To solve for \(r\) and \(q\), we can consider the factor pairs of \(36\): 1. \(1 \times 36\) 2. \(2 \times 18\) 3. \(3 \times 12\) 4. \(4 \times 9\) 5. \(6 \times 6\) For each factor pair \((a, b)\), we can set: \[ r - q = a \quad \text{and} \quad r + q = b \] From these, we can solve for \(r\) and \(q\): \[ r = \frac{a + b}{2}, \quad q = \frac{b - a}{2} \] ### Step 9: Check valid pairs We need \(q\) to be a positive integer. Let's check the pairs: 1. For \( (1, 36) \): - \(r = \frac{1 + 36}{2} = 18.5\) (not valid) 2. For \( (2, 18) \): - \(r = \frac{2 + 18}{2} = 10\) - \(q = \frac{18 - 2}{2} = 8\) (valid) 3. For \( (3, 12) \): - \(r = \frac{3 + 12}{2} = 7.5\) (not valid) 4. For \( (4, 9) \): - \(r = \frac{4 + 9}{2} = 6.5\) (not valid) 5. For \( (6, 6) \): - \(r = \frac{6 + 6}{2} = 6\) - \(q = \frac{6 - 6}{2} = 0\) (not valid) ### Step 10: Calculate \(p + q + r\) The only valid solution is \(p = 6\), \(q = 8\), and \(r = 10\). Now we can find: \[ p + q + r = 6 + 8 + 10 = 24 \] ### Final Answer Thus, the least possible value of \(p + q + r\) is: \[ \boxed{24} \]
Promotional Banner

Topper's Solved these Questions

  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise LEVEL-2|34 Videos
  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise JEE MAIN & Advance ( ARCHIVE)|46 Videos
  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise JEE MAIN & Advance ( ARCHIVE)|46 Videos
  • REVISION TEST-2 JEE

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos
  • STRAIGHT LINES

    VMC MODULES ENGLISH|Exercise JEE Advanced Archive (State true or false: Q. 42)|1 Videos

Similar Questions

Explore conceptually related problems

Consider the equation p = 5-2q - 3 If p = 4 then possible values of q are

Consider the equation p = 5-2q - 3 Greatest sat of all possible values of p for q in R is

If p is an integer such that -5ltplt5 and q=3p-p^(3) , what is the least possible value of q?

If "^(2n+1)P_(n-1):^(2n-1)P_n=3:5, then find the value of n .

If p = 3 , q = 2 and r = -1, find the values of (3p^(2)q+5r)/(2pq-3qr)

The vertices of triangle are A(-5,3),B(p-1) and C(6,q). If the centroid of the DeltaABC is (1,-1) , then the values of p and q are (i) p=-2,q=5 (ii) p=2,q=-5 (iii) p=3,q=5 (iv) p=-5,q=2

If the points P(1,5) , Q(-1,1) and R(4,y) are collinear, find the value of y .

If p = 3, q = 2 and r = -1, find the values of 2p^(2)+3a^(2)-r^(2)+2pr-5pqr

The positive integers p ,q and r all are prime if p^2-q^2=r , then possible value of r is 3 (b) 5 (c) 7 (d) 1

The positive integers p ,q and r are all primes if p^2 − q^2 = r , then possible value of r is 3 (b) 5 (c) 7 (d) 1

VMC MODULES ENGLISH-SEQUENCE AND SERIES -LEVEL-1
  1. If a,b,c are in A.P. then the roots of the equation (a+b-c)x^2 + (b-a...

    Text Solution

    |

  2. If sum of first n terms of a series is n/(n+1) find 1/(T8)where T8 is ...

    Text Solution

    |

  3. if (1+3+5+7+....(2p-1))+(1+3+5+...+(2q-1)) =1+3+5+...+(2r -1), then le...

    Text Solution

    |

  4. If S1 ,S2 and S3 denote the sum of first n1,n2 and n3 terms respec...

    Text Solution

    |

  5. If a, b, c and d are in G.P. show that (a^2+b^2+c^2)(b^2+c^2+d^2)=(a ...

    Text Solution

    |

  6. Let a1,a2 ,a3 …..be in A.P. and ap, aq , ar be in G.P. Then aq : ap ...

    Text Solution

    |

  7. If underset(r=1)overset(n)Sigma r(r+1)(2r +3)=an^4+bn^3+cn^2+dn +e th...

    Text Solution

    |

  8. If cos(x-y), cosx and cos(x+y) are in H.P., then |cos x sec (y)/(2)| e...

    Text Solution

    |

  9. Find the sum sum(r=1)^n r(r+1)(r+2)(r+3)dot

    Text Solution

    |

  10. If a1,a2 …. an are positive real numbers whose product is a fixed re...

    Text Solution

    |

  11. If 3+5x + 7x^2…., oo term s=44/9 , then x is equal to:

    Text Solution

    |

  12. If a(1), a(2), …..,a(n) are in A.P. with common difference d ne 0, the...

    Text Solution

    |

  13. Let a1,a2,a3 …. an be in A.P. If 1/(a1an)+1/(a2a(n-1))+… + 1/(an a...

    Text Solution

    |

  14. Sum to infinity of the series 2/3 - 5/6 + 2/3 -11/24 +….. Is

    Text Solution

    |

  15. If a ,a1, a2, a3, a(2n),b are in A.P. and a ,g1,g2,g3, ,g(2n),b . are...

    Text Solution

    |

  16. If I(r)=r(r^2-1), then sum(r=2)^n 1/(I(r)) is equal to

    Text Solution

    |

  17. If sum(r=1)^n Tr=n(2n^2+9n+13), then find the sum sum(r=1)^nsqrt(Tr)do...

    Text Solution

    |

  18. Let (1 + x^2)^2 (1 + x)^n = A0 +A1 x+A2 x^2 + ...... If A0, A1, A2, a...

    Text Solution

    |

  19. If 1/1^3 + (1+2)/(1^3+2^3)+(1+2+3)/(1^3+2^3+3^3) +.......n terms then ...

    Text Solution

    |

  20. If x1, x2, x3,...... x (2n) are in A.P, then sum (r=1)^(2n) (-1)^(r...

    Text Solution

    |