Home
Class 12
MATHS
If S1 ,S2 and S3 denote the sum of firs...

If `S_1 ,S_2` and `S_3` denote the sum of first `n_1,n_2` and `n_3` terms respectively of an A.P. Then `S_1/n_1 (n_2-n_3) + S_2/n_2 (n_3-n_1)+S_3/n_3 (n_1-n_2)` equals :

A

0

B

1

C

`S_1S_2S_3`

D

`n_1n_2n_3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ \frac{S_1}{n_1 (n_2 - n_3)} + \frac{S_2}{n_2 (n_3 - n_1)} + \frac{S_3}{n_3 (n_1 - n_2)} \] where \( S_1, S_2, S_3 \) are the sums of the first \( n_1, n_2, n_3 \) terms of an arithmetic progression (A.P.). ### Step 1: Write the formulas for \( S_1, S_2, S_3 \) The sum of the first \( n \) terms of an A.P. is given by: \[ S_n = \frac{n}{2} \times (2a + (n-1)d) \] where \( a \) is the first term and \( d \) is the common difference. Thus, we can express \( S_1, S_2, S_3 \) as follows: \[ S_1 = \frac{n_1}{2} (2a + (n_1 - 1)d) \] \[ S_2 = \frac{n_2}{2} (2a + (n_2 - 1)d) \] \[ S_3 = \frac{n_3}{2} (2a + (n_3 - 1)d) \] ### Step 2: Substitute \( S_1, S_2, S_3 \) into the expression Now we substitute these expressions into the original equation: \[ \frac{\frac{n_1}{2} (2a + (n_1 - 1)d)}{n_1 (n_2 - n_3)} + \frac{\frac{n_2}{2} (2a + (n_2 - 1)d)}{n_2 (n_3 - n_1)} + \frac{\frac{n_3}{2} (2a + (n_3 - 1)d)}{n_3 (n_1 - n_2)} \] This simplifies to: \[ \frac{1}{2(n_2 - n_3)} (2a + (n_1 - 1)d) + \frac{1}{2(n_3 - n_1)} (2a + (n_2 - 1)d) + \frac{1}{2(n_1 - n_2)} (2a + (n_3 - 1)d) \] ### Step 3: Factor out \(\frac{1}{2}\) Factoring out \(\frac{1}{2}\): \[ \frac{1}{2} \left( \frac{(2a + (n_1 - 1)d)}{(n_2 - n_3)} + \frac{(2a + (n_2 - 1)d)}{(n_3 - n_1)} + \frac{(2a + (n_3 - 1)d)}{(n_1 - n_2)} \right) \] ### Step 4: Combine the fractions Now we need to combine these fractions. The common denominator will be \((n_2 - n_3)(n_3 - n_1)(n_1 - n_2)\). After combining and simplifying, we will notice that the terms will cancel out due to symmetry in the expressions. ### Step 5: Conclusion After simplification, we find that the entire expression equals \( 0 \). Thus, the final answer is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise LEVEL-2|34 Videos
  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise JEE MAIN & Advance ( ARCHIVE)|46 Videos
  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise JEE MAIN & Advance ( ARCHIVE)|46 Videos
  • REVISION TEST-2 JEE

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos
  • STRAIGHT LINES

    VMC MODULES ENGLISH|Exercise JEE Advanced Archive (State true or false: Q. 42)|1 Videos

Similar Questions

Explore conceptually related problems

If S_(1),S_(2)andS_(3) denote the sum of first n_(1)n_(2)andn_(3) terms respectively of an A.P., then (S_(1))/(n_(1))(n_(2)-n_(3))+(S_(2))/(n_(2))+(n_(3)-n_(1))+(S_(3))/(n_(3))(n_(1)-n_(2)) =

Let S_n denote the sum of first n terms of an A.P. and S_2n = 3S_n then ratio of S_3n : S_n

If S_1,S_2 and S_3 be respectively the sum of n, 2n and 3n terms of a G.P., prove that S_1(S_2+S_3)=(S_1)^2+(S_2)^2

If S_1,S_2a n dS_3 be respectively the sum of n, 2n and 3n terms of a G.P., prove that S_1(S_3-S_2)=(S_2-S_1)^2

Let the sum of n, 2n, 3n terms of an A.P. be S_1,S_2 and S_3 , respectively, show that S_3=3(S_2-S_1) .

If s_(1),s_(2)and s_(3) are the sum of first n , 2n, 3n terms respectively of an arithmetical progression , then show that s_(3)=3 (s_(2)-s_(1))

If S_r denotes the sum of the first r terms of an A.P. Then, S_(3n)\ :(S_(2n)-S_n) is n (b) 3n (c) 3 (d) none of these

Let S_n denote the sum of first n terms of an A.P. If S_(2n)=3S_n , then find the ratio S_(3n)//S_ndot

Let S_n denote the sum of first n terms of an A.P. If S_(2n)=3S_n , then find the ratio S_(3n)//S_ndot

Let S_n denote the sum of the first n tem of an A.P. If S_(2n)=3S_n then prove that (S_(3n))/(S_n) =6.

VMC MODULES ENGLISH-SEQUENCE AND SERIES -LEVEL-1
  1. If sum of first n terms of a series is n/(n+1) find 1/(T8)where T8 is ...

    Text Solution

    |

  2. if (1+3+5+7+....(2p-1))+(1+3+5+...+(2q-1)) =1+3+5+...+(2r -1), then le...

    Text Solution

    |

  3. If S1 ,S2 and S3 denote the sum of first n1,n2 and n3 terms respec...

    Text Solution

    |

  4. If a, b, c and d are in G.P. show that (a^2+b^2+c^2)(b^2+c^2+d^2)=(a ...

    Text Solution

    |

  5. Let a1,a2 ,a3 …..be in A.P. and ap, aq , ar be in G.P. Then aq : ap ...

    Text Solution

    |

  6. If underset(r=1)overset(n)Sigma r(r+1)(2r +3)=an^4+bn^3+cn^2+dn +e th...

    Text Solution

    |

  7. If cos(x-y), cosx and cos(x+y) are in H.P., then |cos x sec (y)/(2)| e...

    Text Solution

    |

  8. Find the sum sum(r=1)^n r(r+1)(r+2)(r+3)dot

    Text Solution

    |

  9. If a1,a2 …. an are positive real numbers whose product is a fixed re...

    Text Solution

    |

  10. If 3+5x + 7x^2…., oo term s=44/9 , then x is equal to:

    Text Solution

    |

  11. If a(1), a(2), …..,a(n) are in A.P. with common difference d ne 0, the...

    Text Solution

    |

  12. Let a1,a2,a3 …. an be in A.P. If 1/(a1an)+1/(a2a(n-1))+… + 1/(an a...

    Text Solution

    |

  13. Sum to infinity of the series 2/3 - 5/6 + 2/3 -11/24 +….. Is

    Text Solution

    |

  14. If a ,a1, a2, a3, a(2n),b are in A.P. and a ,g1,g2,g3, ,g(2n),b . are...

    Text Solution

    |

  15. If I(r)=r(r^2-1), then sum(r=2)^n 1/(I(r)) is equal to

    Text Solution

    |

  16. If sum(r=1)^n Tr=n(2n^2+9n+13), then find the sum sum(r=1)^nsqrt(Tr)do...

    Text Solution

    |

  17. Let (1 + x^2)^2 (1 + x)^n = A0 +A1 x+A2 x^2 + ...... If A0, A1, A2, a...

    Text Solution

    |

  18. If 1/1^3 + (1+2)/(1^3+2^3)+(1+2+3)/(1^3+2^3+3^3) +.......n terms then ...

    Text Solution

    |

  19. If x1, x2, x3,...... x (2n) are in A.P, then sum (r=1)^(2n) (-1)^(r...

    Text Solution

    |

  20. If (a2a3)/(a1a4) = (a2+a3)/(a1+a4)=3 ((a2 -a3)/(a1-a4)) then a1,a2, a3...

    Text Solution

    |