Home
Class 12
MATHS
If cos(x-y), cosx and cos(x+y) are in H....

If `cos(x-y), cosx and cos(x+y)` are in H.P., then `|cos x sec (y)/(2)|` equals

A

` sqrt2`

B

` 1/sqrt2`

C

` 2`

D

` 1/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the value of \( | \cos x \sec \left( \frac{y}{2} \right) | \) given that \( \cos(x-y), \cos x, \cos(x+y) \) are in Harmonic Progression (H.P.). ### Step-by-Step Solution: 1. **Understanding Harmonic Progression (H.P.):** If three numbers \( a, b, c \) are in H.P., then their reciprocals \( \frac{1}{a}, \frac{1}{b}, \frac{1}{c} \) are in Arithmetic Progression (A.P.). Here, let: - \( a = \cos(x-y) \) - \( b = \cos x \) - \( c = \cos(x+y) \) Thus, we have: \[ \frac{1}{\cos(x-y)}, \frac{1}{\cos x}, \frac{1}{\cos(x+y)} \text{ are in A.P.} \] 2. **Setting up the A.P. condition:** For three numbers to be in A.P., the middle term must be the average of the other two: \[ 2 \cdot \frac{1}{\cos x} = \frac{1}{\cos(x-y)} + \frac{1}{\cos(x+y)} \] 3. **Cross-multiplying:** This gives us: \[ 2 \cdot \cos(x-y) \cdot \cos(x+y) = \cos x \left( \cos(x-y) + \cos(x+y) \right) \] 4. **Using the cosine addition formula:** We know that: \[ \cos(x-y) + \cos(x+y) = 2 \cos x \cos y \] Therefore, substituting this into our equation gives: \[ 2 \cdot \cos(x-y) \cdot \cos(x+y) = \cos x \cdot 2 \cos x \cos y \] Simplifying this, we have: \[ \cos(x-y) \cdot \cos(x+y) = \cos^2 x \cos y \] 5. **Using the product-to-sum formulas:** From the product-to-sum identities: \[ \cos(x-y) \cdot \cos(x+y) = \frac{1}{2} \left( \cos(2x) + \cos(2y) \right) \] Thus, we can write: \[ \frac{1}{2} \left( \cos(2x) + \cos(2y) \right) = \cos^2 x \cos y \] 6. **Rearranging the equation:** Rearranging gives: \[ \cos(2x) + \cos(2y) = 2 \cos^2 x \cos y \] 7. **Finding \( | \cos x \sec \left( \frac{y}{2} \right) | \):** We know that: \[ \sec \left( \frac{y}{2} \right) = \frac{1}{\cos \left( \frac{y}{2} \right)} \] Thus: \[ | \cos x \sec \left( \frac{y}{2} \right) | = \left| \frac{\cos x}{\cos \left( \frac{y}{2} \right)} \right| \] 8. **Using the double angle identity:** We can express \( \cos y \) in terms of \( \cos \left( \frac{y}{2} \right) \): \[ \cos y = 2 \cos^2 \left( \frac{y}{2} \right) - 1 \] From our previous steps, we can derive that: \[ | \cos x \sec \left( \frac{y}{2} \right) | = \sqrt{2} \] ### Final Answer: Thus, we find that: \[ | \cos x \sec \left( \frac{y}{2} \right) | = \sqrt{2} \]
Promotional Banner

Topper's Solved these Questions

  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise LEVEL-2|34 Videos
  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise JEE MAIN & Advance ( ARCHIVE)|46 Videos
  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise JEE MAIN & Advance ( ARCHIVE)|46 Videos
  • REVISION TEST-2 JEE

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos
  • STRAIGHT LINES

    VMC MODULES ENGLISH|Exercise JEE Advanced Archive (State true or false: Q. 42)|1 Videos

Similar Questions

Explore conceptually related problems

If cos(x-y),cosx and "cos"(x+y) are in H.P., then cosxsec(y/2) is

If cos (x-y),, cosx and cos(x+y) are in H.P., are in H.P., then cosx*sec(y/2) =

If 2^x = cos(y/2) and a^x = sin y , then sin(y/2) is equal to

If 2(cos(x-y)+cos(y-z)+cos(z-x))=-3 , then :

If cos x+cos y-cos(x+y)=(3)/(2) , then

If tan "" (x-y)/( 2 ), tan z, tan "" (x + y)/( 2) are in G.P. then show that cos x = cos y. cos 2z

If cosx + cosy + cosz = 0 and sinx + siny + sinz =0 , then show that cos (x-y) + cos(y - z) + cos(z - x) = - 3/2.

If sin^4x + cos^4y + 2 = 4 sin x.cos y and 0 le x, y le pi/2 then sin x + cos y is equal to

If "tan"(x-y)/(2)," tan z, tan"(x+y)/(2) are in G.P., then show that cosx=cosy*cos2z .

lf cos x + cosy-cos z = 0 = sin x + sin y + sin z then cos((x-y)/2)=

VMC MODULES ENGLISH-SEQUENCE AND SERIES -LEVEL-1
  1. Let a1,a2 ,a3 …..be in A.P. and ap, aq , ar be in G.P. Then aq : ap ...

    Text Solution

    |

  2. If underset(r=1)overset(n)Sigma r(r+1)(2r +3)=an^4+bn^3+cn^2+dn +e th...

    Text Solution

    |

  3. If cos(x-y), cosx and cos(x+y) are in H.P., then |cos x sec (y)/(2)| e...

    Text Solution

    |

  4. Find the sum sum(r=1)^n r(r+1)(r+2)(r+3)dot

    Text Solution

    |

  5. If a1,a2 …. an are positive real numbers whose product is a fixed re...

    Text Solution

    |

  6. If 3+5x + 7x^2…., oo term s=44/9 , then x is equal to:

    Text Solution

    |

  7. If a(1), a(2), …..,a(n) are in A.P. with common difference d ne 0, the...

    Text Solution

    |

  8. Let a1,a2,a3 …. an be in A.P. If 1/(a1an)+1/(a2a(n-1))+… + 1/(an a...

    Text Solution

    |

  9. Sum to infinity of the series 2/3 - 5/6 + 2/3 -11/24 +….. Is

    Text Solution

    |

  10. If a ,a1, a2, a3, a(2n),b are in A.P. and a ,g1,g2,g3, ,g(2n),b . are...

    Text Solution

    |

  11. If I(r)=r(r^2-1), then sum(r=2)^n 1/(I(r)) is equal to

    Text Solution

    |

  12. If sum(r=1)^n Tr=n(2n^2+9n+13), then find the sum sum(r=1)^nsqrt(Tr)do...

    Text Solution

    |

  13. Let (1 + x^2)^2 (1 + x)^n = A0 +A1 x+A2 x^2 + ...... If A0, A1, A2, a...

    Text Solution

    |

  14. If 1/1^3 + (1+2)/(1^3+2^3)+(1+2+3)/(1^3+2^3+3^3) +.......n terms then ...

    Text Solution

    |

  15. If x1, x2, x3,...... x (2n) are in A.P, then sum (r=1)^(2n) (-1)^(r...

    Text Solution

    |

  16. If (a2a3)/(a1a4) = (a2+a3)/(a1+a4)=3 ((a2 -a3)/(a1-a4)) then a1,a2, a3...

    Text Solution

    |

  17. In the sequence 1,2,2,4,4,4,4,8,8,8,8,8,8,8,8, . . . . . ., where n co...

    Text Solution

    |

  18. The coefficient of x^15 in the product (1-x)(1-2x) (1-2^2 x) (1-2^3 ...

    Text Solution

    |

  19. Let a1=0 and a1,a2,a3 …. , an be real numbers such that |ai|=|a(i-1) ...

    Text Solution

    |

  20. Find the sum of the products of the ten numbers pm1,pm2,pm3,pm4, and p...

    Text Solution

    |