Home
Class 12
MATHS
Let a1,a2,a3 …. an be in A.P. If 1/(a1...

Let `a_1,a_2,a_3` …. `a_n` be in A.P. If `1/(a_1a_n)+1/(a_2a_(n-1))`+… + `1/(a_n a_1) = k/(a_1 + a_n) (1/a_1 + 1/a_2 + …. 1/a_n)` , then k is equal to :

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given equation involving the terms of an arithmetic progression (A.P.) and simplify it step by step. ### Step 1: Understanding the terms in A.P. Let the first term of the A.P. be \( a_1 = a \) and the common difference be \( d \). Then the terms of the A.P. can be expressed as: - \( a_1 = a \) - \( a_2 = a + d \) - \( a_3 = a + 2d \) - ... - \( a_n = a + (n-1)d \) ### Step 2: Rewrite the left-hand side We need to evaluate the left-hand side of the equation: \[ \frac{1}{a_1 a_n} + \frac{1}{a_2 a_{n-1}} + \ldots + \frac{1}{a_n a_1} \] This can be rewritten using the expressions for \( a_i \): \[ \frac{1}{a(a + (n-1)d)} + \frac{1}{(a + d)(a + (n-2)d)} + \ldots + \frac{1}{(a + (n-1)d)a} \] ### Step 3: Generalize the terms Notice that each term in the series can be expressed as: \[ \frac{1}{a_i a_{n-i+1}} = \frac{1}{(a + (i-1)d)(a + (n-i)d)} \] for \( i = 1, 2, \ldots, n \). ### Step 4: Factor out common terms We can factor out the common term \( a + a_n \) from the denominator: \[ = \frac{1}{(a + a_n)} \left( \frac{1}{a} + \frac{1}{a + d} + \ldots + \frac{1}{a + (n-1)d} \right) \] This gives us: \[ \frac{1}{(a + a_n)} \sum_{i=1}^{n} \frac{1}{a + (i-1)d} \] ### Step 5: Simplifying the right-hand side The right-hand side of the equation is: \[ \frac{k}{a_1 + a_n} \left( \frac{1}{a_1} + \frac{1}{a_2} + \ldots + \frac{1}{a_n} \right) \] Substituting \( a_1 = a \) and \( a_n = a + (n-1)d \), we have: \[ = \frac{k}{(a + (a + (n-1)d))} \left( \frac{1}{a} + \frac{1}{a + d} + \ldots + \frac{1}{a + (n-1)d} \right) \] ### Step 6: Equating both sides Now we equate the left-hand side and right-hand side: \[ \frac{1}{(a + a_n)} \sum_{i=1}^{n} \frac{1}{a + (i-1)d} = \frac{k}{(a + a_n)} \left( \sum_{i=1}^{n} \frac{1}{a + (i-1)d} \right) \] ### Step 7: Solving for \( k \) Since both sides have the common term \( \sum_{i=1}^{n} \frac{1}{a + (i-1)d} \) and \( a + a_n \) (which is the same), we can cancel them out, leading to: \[ 1 = k \] ### Conclusion Thus, the value of \( k \) is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise LEVEL-2|34 Videos
  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise JEE MAIN & Advance ( ARCHIVE)|46 Videos
  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise JEE MAIN & Advance ( ARCHIVE)|46 Videos
  • REVISION TEST-2 JEE

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos
  • STRAIGHT LINES

    VMC MODULES ENGLISH|Exercise JEE Advanced Archive (State true or false: Q. 42)|1 Videos

Similar Questions

Explore conceptually related problems

If a_1,a_2,a_3,……a_n are in A.P. [1/(a_1a_n)+1/(a_2a_(n-1))+1/(a_3a_(n-2))+..+1/(a_na_1)]

Let a_1, a_2, a_3, ...a_(n) be an AP. then: 1 / (a_1 a_n) + 1 / (a_2 a_(n-1)) + 1 /(a_3a_(n-2))+......+ 1 /(a_(n) a_1) =

If a_1,a_2,a_3,...,a_(n+1) are in A.P. , then 1/(a_1a_2)+1/(a_2a_3)....+1/(a_na_(n+1)) is

If a_1,a_2,a_3, ,a_n are an A.P. of non-zero terms, prove that 1/(a_1a_2)+1/(a_2a_3)++1/(a_(n-1)a_n)= (n-1)/(a_1a_n)

If a_1, a_2, a_3,.....a_n are in H.P. and a_1 a_2+a_2 a_3+a_3 a_4+.......a_(n-1) a_n=ka_1 a_n , then k is equal to

If a_1, a_2, a_3, ,a_(2n+1) are in A.P., then (a_(2n+1)-a_1)/(a_(2n+1)+a_1)+(a_(2n)-a_2)/(a_(2n)+a_2)++(a_(n+2)-a_n)/(a_(n+2)+a_n) is equal to a. (n(n+1))/2xx(a_2-a_1)/(a_(n+1)) b. (n(n+1))/2 c. (n+1)(a_2-a_1) d. none of these

If a_1,a_2,a_3….a_(2n+1) are in A.P then (a_(2n+1)-a_1)/(a_(2n+1)+a_1)+(a_2n-a_2)/(a_(2n)+a_2)+....+(a_(n+2)-a_n)/(a_(n+2)+a_n) is equal to

Let a_1,a_2,a_3…… ,a_n be in G.P such that 3a_1+7a_2 +3a_3-4a_5=0 Then common ratio of G.P can be

a_1,a_2,a_3 ,…., a_n from an A.P. Then the sum sum_(i=1)^10 (a_i a_(i+1)a_(i+2))/(a_i + a_(i+2)) where a_1=1 and a_2=2 is :

If a_1,a_2 ...a_n are nth roots of unity then 1/(1-a_1) +1/(1-a_2)+1/(1-a_3)..+1/(1-a_n) is equal to

VMC MODULES ENGLISH-SEQUENCE AND SERIES -LEVEL-1
  1. If 3+5x + 7x^2…., oo term s=44/9 , then x is equal to:

    Text Solution

    |

  2. If a(1), a(2), …..,a(n) are in A.P. with common difference d ne 0, the...

    Text Solution

    |

  3. Let a1,a2,a3 …. an be in A.P. If 1/(a1an)+1/(a2a(n-1))+… + 1/(an a...

    Text Solution

    |

  4. Sum to infinity of the series 2/3 - 5/6 + 2/3 -11/24 +….. Is

    Text Solution

    |

  5. If a ,a1, a2, a3, a(2n),b are in A.P. and a ,g1,g2,g3, ,g(2n),b . are...

    Text Solution

    |

  6. If I(r)=r(r^2-1), then sum(r=2)^n 1/(I(r)) is equal to

    Text Solution

    |

  7. If sum(r=1)^n Tr=n(2n^2+9n+13), then find the sum sum(r=1)^nsqrt(Tr)do...

    Text Solution

    |

  8. Let (1 + x^2)^2 (1 + x)^n = A0 +A1 x+A2 x^2 + ...... If A0, A1, A2, a...

    Text Solution

    |

  9. If 1/1^3 + (1+2)/(1^3+2^3)+(1+2+3)/(1^3+2^3+3^3) +.......n terms then ...

    Text Solution

    |

  10. If x1, x2, x3,...... x (2n) are in A.P, then sum (r=1)^(2n) (-1)^(r...

    Text Solution

    |

  11. If (a2a3)/(a1a4) = (a2+a3)/(a1+a4)=3 ((a2 -a3)/(a1-a4)) then a1,a2, a3...

    Text Solution

    |

  12. In the sequence 1,2,2,4,4,4,4,8,8,8,8,8,8,8,8, . . . . . ., where n co...

    Text Solution

    |

  13. The coefficient of x^15 in the product (1-x)(1-2x) (1-2^2 x) (1-2^3 ...

    Text Solution

    |

  14. Let a1=0 and a1,a2,a3 …. , an be real numbers such that |ai|=|a(i-1) ...

    Text Solution

    |

  15. Find the sum of the products of the ten numbers pm1,pm2,pm3,pm4, and p...

    Text Solution

    |

  16. If 1/1^4+1/2^4+1/3^4+...+oo=pi^4/90, then 1/1^4+1/3^4+1/5^4+...+oo=

    Text Solution

    |

  17. If n is an odd integer greater than or equal to 1, the value of =n^(3)...

    Text Solution

    |

  18. Let S(k) =sum( i =0) ^(oo) (1)/((k +1)^(t)), then sum (k =1) ^(n) kS(...

    Text Solution

    |

  19. about to only mathematics

    Text Solution

    |

  20. ABC is a right-angled triangle in which angleB=90^(@) and BC=a. If n p...

    Text Solution

    |