Home
Class 12
MATHS
Sum to infinity of the series 2/3 - 5/6 ...

Sum to infinity of the series `2/3 - 5/6 + 2/3 -11/24` +….. Is

A

`4/9`

B

`1/3`

C

`2/9`

D

`2/3`

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum to infinity of the series \( S = \frac{2}{3} - \frac{5}{6} + \frac{2}{3} - \frac{11}{24} + \ldots \), we will follow these steps: ### Step 1: Define the series Let \( S = \frac{2}{3} - \frac{5}{6} + \frac{2}{3} - \frac{11}{24} + \ldots \) ### Step 2: Multiply the series by \(-\frac{1}{2}\) We will multiply both sides of the equation by \(-\frac{1}{2}\): \[ -\frac{S}{2} = -\frac{2}{6} + \frac{5}{12} - \frac{8}{24} + \ldots \] ### Step 3: Rewrite the equations Now we have two equations: 1. \( S = \frac{2}{3} - \frac{5}{6} + \frac{2}{3} - \frac{11}{24} + \ldots \) (Equation 1) 2. \( -\frac{S}{2} = -\frac{2}{6} + \frac{5}{12} - \frac{8}{24} + \ldots \) (Equation 2) ### Step 4: Subtract Equation 2 from Equation 1 Now, we will subtract Equation 2 from Equation 1: \[ S + \frac{S}{2} = \left(\frac{2}{3} - \frac{5}{6} + \frac{2}{3} - \frac{11}{24} + \ldots\right) - \left(-\frac{2}{6} + \frac{5}{12} - \frac{8}{24} + \ldots\right) \] This simplifies to: \[ \frac{3S}{2} = \frac{2}{3} - \left(-\frac{5}{6} + \frac{2}{6} + \frac{5}{12} - \frac{8}{24} + \ldots\right) \] ### Step 5: Combine like terms Now, we will combine the terms on the right-hand side: \[ \frac{3S}{2} = \frac{2}{3} - \left(-\frac{3}{6} + \frac{5}{12} + \frac{3}{24} + \ldots\right) \] ### Step 6: Identify the geometric series The series on the right can be recognized as a geometric series: \[ \frac{3}{6} = \frac{1}{2}, \quad \frac{5}{12} = \frac{5}{12}, \quad \frac{3}{24} = \frac{1}{8}, \ldots \] This series has a first term \( a = \frac{1}{2} \) and a common ratio \( r = -\frac{1}{2} \). ### Step 7: Use the formula for the sum of an infinite geometric series The sum of an infinite geometric series is given by: \[ \text{Sum} = \frac{a}{1 - r} \] Thus, substituting \( a = \frac{1}{2} \) and \( r = -\frac{1}{2} \): \[ \text{Sum} = \frac{\frac{1}{2}}{1 - (-\frac{1}{2})} = \frac{\frac{1}{2}}{1 + \frac{1}{2}} = \frac{\frac{1}{2}}{\frac{3}{2}} = \frac{1}{3} \] ### Step 8: Substitute back into the equation Now substituting back into our equation: \[ \frac{3S}{2} = \frac{2}{3} - \frac{1}{3} \] This simplifies to: \[ \frac{3S}{2} = \frac{1}{3} \] ### Step 9: Solve for \( S \) Now, multiply both sides by \( \frac{2}{3} \): \[ S = \frac{2}{3} \cdot \frac{1}{3} = \frac{2}{9} \] ### Final Answer Thus, the sum to infinity of the series is: \[ \boxed{\frac{2}{9}} \]
Promotional Banner

Topper's Solved these Questions

  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise LEVEL-2|34 Videos
  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise JEE MAIN & Advance ( ARCHIVE)|46 Videos
  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise JEE MAIN & Advance ( ARCHIVE)|46 Videos
  • REVISION TEST-2 JEE

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos
  • STRAIGHT LINES

    VMC MODULES ENGLISH|Exercise JEE Advanced Archive (State true or false: Q. 42)|1 Videos

Similar Questions

Explore conceptually related problems

If sum to infinity of the series 3- 5r +7r^(2) -9r^(3) + ….." is " (14)/(9) . Find r.

The sum to infinity of the series 1+2/3+6/(3^2)+(10)/(3^3)+(14)/(3^4). . . . . . is (1) 2 (2) 3 (3) 4 (4) 6

The sum of infinite terms of the series 5 - 7/3 + (9)/(3 ^(2)) - (11)/( 3 ^(3))+……..o is

If the sum to infinity of the series 1 + 4x + 7x^2 + 10x^3 +............. is 35/16 then x= (A) 1/5 (B) 2/5 (C) 3/7 (D) 1/7

The sum to infinity of the series 1/2.4+1/4.6+1/6.8+1/8.10+....... is

If the sum to infinity of the series 3+(3+d)1/4+(3+2d)1/(4^2)+oo is (44)/9 , then find ddot

If the sum to infinity of the series 3+(3+d)1/4+(3+2d)1/(4^2)+......oo is (44)/9 , then find d ddot

In the sum to infinity of the series 3+(3+x) (1)/(4) + (3+2x)(1)/(4^(2))+ ..... "is" (44)/(9) find x.

Find the sum to infinity of the series 2+1+(1)/(2)+...oo.

Find sum to infinite terms of the series 1 + 2 ((11)/(10)) + 3 ((11)/(10)) ^(2) + 4 ((11)/(10)) ^(3) +………

VMC MODULES ENGLISH-SEQUENCE AND SERIES -LEVEL-1
  1. If a(1), a(2), …..,a(n) are in A.P. with common difference d ne 0, the...

    Text Solution

    |

  2. Let a1,a2,a3 …. an be in A.P. If 1/(a1an)+1/(a2a(n-1))+… + 1/(an a...

    Text Solution

    |

  3. Sum to infinity of the series 2/3 - 5/6 + 2/3 -11/24 +….. Is

    Text Solution

    |

  4. If a ,a1, a2, a3, a(2n),b are in A.P. and a ,g1,g2,g3, ,g(2n),b . are...

    Text Solution

    |

  5. If I(r)=r(r^2-1), then sum(r=2)^n 1/(I(r)) is equal to

    Text Solution

    |

  6. If sum(r=1)^n Tr=n(2n^2+9n+13), then find the sum sum(r=1)^nsqrt(Tr)do...

    Text Solution

    |

  7. Let (1 + x^2)^2 (1 + x)^n = A0 +A1 x+A2 x^2 + ...... If A0, A1, A2, a...

    Text Solution

    |

  8. If 1/1^3 + (1+2)/(1^3+2^3)+(1+2+3)/(1^3+2^3+3^3) +.......n terms then ...

    Text Solution

    |

  9. If x1, x2, x3,...... x (2n) are in A.P, then sum (r=1)^(2n) (-1)^(r...

    Text Solution

    |

  10. If (a2a3)/(a1a4) = (a2+a3)/(a1+a4)=3 ((a2 -a3)/(a1-a4)) then a1,a2, a3...

    Text Solution

    |

  11. In the sequence 1,2,2,4,4,4,4,8,8,8,8,8,8,8,8, . . . . . ., where n co...

    Text Solution

    |

  12. The coefficient of x^15 in the product (1-x)(1-2x) (1-2^2 x) (1-2^3 ...

    Text Solution

    |

  13. Let a1=0 and a1,a2,a3 …. , an be real numbers such that |ai|=|a(i-1) ...

    Text Solution

    |

  14. Find the sum of the products of the ten numbers pm1,pm2,pm3,pm4, and p...

    Text Solution

    |

  15. If 1/1^4+1/2^4+1/3^4+...+oo=pi^4/90, then 1/1^4+1/3^4+1/5^4+...+oo=

    Text Solution

    |

  16. If n is an odd integer greater than or equal to 1, the value of =n^(3)...

    Text Solution

    |

  17. Let S(k) =sum( i =0) ^(oo) (1)/((k +1)^(t)), then sum (k =1) ^(n) kS(...

    Text Solution

    |

  18. about to only mathematics

    Text Solution

    |

  19. ABC is a right-angled triangle in which angleB=90^(@) and BC=a. If n p...

    Text Solution

    |

  20. If a ,b ,a n dc are in A.P. p ,q ,a n dr are in H.P., and a p ,b q ,a ...

    Text Solution

    |