Home
Class 12
MATHS
If I(r)=r(r^2-1), then sum(r=2)^n 1/(I...

If `I(r)=r(r^2-1)`, then `sum_(r=2)^n 1/(I(r))` is equal to

A

`1/4 (1-1/(n(n+1)))`

B

`1/4 (2-1/(n(n+1)))`

C

`1/4 (1-2/(n(n+1)))`

D

`1/4 (2+ 1/(n(n+1)))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the sum: \[ \sum_{r=2}^{n} \frac{1}{I(r)} \] where \( I(r) = r(r^2 - 1) \). ### Step 1: Substitute \( I(r) \) First, we substitute the expression for \( I(r) \): \[ I(r) = r(r^2 - 1) = r(r-1)(r+1) \] Thus, we can rewrite the sum as: \[ \sum_{r=2}^{n} \frac{1}{I(r)} = \sum_{r=2}^{n} \frac{1}{r(r^2 - 1)} = \sum_{r=2}^{n} \frac{1}{r(r-1)(r+1)} \] ### Step 2: Use Partial Fraction Decomposition Next, we can use partial fraction decomposition to simplify the term: \[ \frac{1}{r(r-1)(r+1)} = \frac{A}{r-1} + \frac{B}{r} + \frac{C}{r+1} \] Multiplying through by the denominator \( r(r-1)(r+1) \) gives: \[ 1 = A r(r+1) + B (r-1)(r+1) + C r(r-1) \] ### Step 3: Solve for Coefficients To find the coefficients \( A, B, C \), we can choose convenient values for \( r \): 1. Let \( r = 1 \): \[ 1 = A(1)(2) + B(0) + C(0) \implies A = \frac{1}{2} \] 2. Let \( r = 0 \): \[ 1 = A(0) + B(-1)(1) + C(0) \implies -B = 1 \implies B = -1 \] 3. Let \( r = -1 \): \[ 1 = A(-2)(0) + B(0) + C(-1)(-2) \implies 2C = 1 \implies C = \frac{1}{2} \] Thus, we have: \[ \frac{1}{r(r-1)(r+1)} = \frac{1/2}{r-1} - \frac{1}{r} + \frac{1/2}{r+1} \] ### Step 4: Substitute Back into the Sum Now we can substitute back into the sum: \[ \sum_{r=2}^{n} \left( \frac{1/2}{r-1} - \frac{1}{r} + \frac{1/2}{r+1} \right) \] ### Step 5: Split the Sum This can be split into three separate sums: \[ \frac{1}{2} \sum_{r=2}^{n} \frac{1}{r-1} - \sum_{r=2}^{n} \frac{1}{r} + \frac{1}{2} \sum_{r=2}^{n} \frac{1}{r+1} \] ### Step 6: Evaluate Each Sum 1. The first sum \( \sum_{r=2}^{n} \frac{1}{r-1} \) is: \[ \sum_{r=1}^{n-1} \frac{1}{r} \] 2. The second sum \( \sum_{r=2}^{n} \frac{1}{r} \) is: \[ \sum_{r=2}^{n} \frac{1}{r} \] 3. The third sum \( \sum_{r=2}^{n} \frac{1}{r+1} \) is: \[ \sum_{r=3}^{n+1} \frac{1}{r} \] ### Step 7: Combine the Results Putting it all together, we have: \[ \frac{1}{2} \left( \sum_{r=1}^{n-1} \frac{1}{r} \right) - \left( \sum_{r=2}^{n} \frac{1}{r} \right) + \frac{1}{2} \left( \sum_{r=3}^{n+1} \frac{1}{r} \right) \] ### Step 8: Simplify After simplification, we can observe that many terms will cancel out. The final result will be: \[ \frac{1}{4} \left( 1 - \frac{2}{n(n+1)} \right) \] ### Final Result Thus, the value of the sum is: \[ \frac{1}{4} \left( 1 - \frac{2}{n(n+1)} \right) \]
Promotional Banner

Topper's Solved these Questions

  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise LEVEL-2|34 Videos
  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise JEE MAIN & Advance ( ARCHIVE)|46 Videos
  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise JEE MAIN & Advance ( ARCHIVE)|46 Videos
  • REVISION TEST-2 JEE

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos
  • STRAIGHT LINES

    VMC MODULES ENGLISH|Exercise JEE Advanced Archive (State true or false: Q. 42)|1 Videos

Similar Questions

Explore conceptually related problems

If sum_(r=1)^n I(r)=(3^n -1) , then sum_(r=1)^n 1/(I(r)) is equal to :

sum_(r=1)^n r(n-r) is equal to :

sum_(r=1)^n r (n-r +1) is equal to :

sum_(r=1)^(n) 1/(log_(2^(r))4) is equal to

The sum sum_(r=0)^n (r+1) (C_r)^2 is equal to :

sum_(r=1)^n (r^2 - r-1)/((r+1)!) is equal to :

If sum_(r=1)^(oo)(1)/((2r-1)^(2))=(pi^(2))/(8) , then sum_(r=1)^(oo) (1)/(r^(2)) is equal to

If S_(r)= sum_(r=1)^(n)T_(1)=n(n+1)(n+2)(n+3) then sum_(r=1)^(10) 1/(T_(r)) is equal to

If sum of x terms of a series is S_(x)=(1)/((2x+3)(2x+1)) whose r^(th) term is T_(r) . Then, sum_(r=1)^(n) (1)/(T_(r)) is equal to

Let sum_(r=1)^(n) r^(6)=f(n)," then "sum_(n=1)^(n) (2r-1)^(6) is equal to

VMC MODULES ENGLISH-SEQUENCE AND SERIES -LEVEL-1
  1. Sum to infinity of the series 2/3 - 5/6 + 2/3 -11/24 +….. Is

    Text Solution

    |

  2. If a ,a1, a2, a3, a(2n),b are in A.P. and a ,g1,g2,g3, ,g(2n),b . are...

    Text Solution

    |

  3. If I(r)=r(r^2-1), then sum(r=2)^n 1/(I(r)) is equal to

    Text Solution

    |

  4. If sum(r=1)^n Tr=n(2n^2+9n+13), then find the sum sum(r=1)^nsqrt(Tr)do...

    Text Solution

    |

  5. Let (1 + x^2)^2 (1 + x)^n = A0 +A1 x+A2 x^2 + ...... If A0, A1, A2, a...

    Text Solution

    |

  6. If 1/1^3 + (1+2)/(1^3+2^3)+(1+2+3)/(1^3+2^3+3^3) +.......n terms then ...

    Text Solution

    |

  7. If x1, x2, x3,...... x (2n) are in A.P, then sum (r=1)^(2n) (-1)^(r...

    Text Solution

    |

  8. If (a2a3)/(a1a4) = (a2+a3)/(a1+a4)=3 ((a2 -a3)/(a1-a4)) then a1,a2, a3...

    Text Solution

    |

  9. In the sequence 1,2,2,4,4,4,4,8,8,8,8,8,8,8,8, . . . . . ., where n co...

    Text Solution

    |

  10. The coefficient of x^15 in the product (1-x)(1-2x) (1-2^2 x) (1-2^3 ...

    Text Solution

    |

  11. Let a1=0 and a1,a2,a3 …. , an be real numbers such that |ai|=|a(i-1) ...

    Text Solution

    |

  12. Find the sum of the products of the ten numbers pm1,pm2,pm3,pm4, and p...

    Text Solution

    |

  13. If 1/1^4+1/2^4+1/3^4+...+oo=pi^4/90, then 1/1^4+1/3^4+1/5^4+...+oo=

    Text Solution

    |

  14. If n is an odd integer greater than or equal to 1, the value of =n^(3)...

    Text Solution

    |

  15. Let S(k) =sum( i =0) ^(oo) (1)/((k +1)^(t)), then sum (k =1) ^(n) kS(...

    Text Solution

    |

  16. about to only mathematics

    Text Solution

    |

  17. ABC is a right-angled triangle in which angleB=90^(@) and BC=a. If n p...

    Text Solution

    |

  18. If a ,b ,a n dc are in A.P. p ,q ,a n dr are in H.P., and a p ,b q ,a ...

    Text Solution

    |

  19. Given that alpha, gamma are roots of the equation Ax^(2)-4x+1=0 and be...

    Text Solution

    |

  20. sum(r=1)^n (r^2 - r-1)/((r+1)!) is equal to :

    Text Solution

    |