Home
Class 12
MATHS
Let (1 + x^2)^2 (1 + x)^n = A0 +A1 x+A2 ...

Let `(1 + x^2)^2 (1 + x)^n = A_0 +A_1 x+A_2 x^2 + ...... ` If `A_0, A_1, A_2,` are in `A.P.` then the value of `n` is

A

n=2 or 3

B

n=2 only

C

n=3 only

D

n=4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( n \) such that the coefficients \( A_0, A_1, A_2 \) of the expansion of \( (1 + x^2)^2 (1 + x)^n \) are in Arithmetic Progression (A.P.). ### Step-by-Step Solution: 1. **Write the Expression**: We start with the expression: \[ (1 + x^2)^2 (1 + x)^n = A_0 + A_1 x + A_2 x^2 + \ldots \] 2. **Evaluate \( A_0 \)**: To find \( A_0 \), substitute \( x = 0 \): \[ A_0 = (1 + 0^2)^2 (1 + 0)^n = 1^2 \cdot 1 = 1 \] 3. **Differentiate the Expression**: Differentiate the expression with respect to \( x \): \[ \frac{d}{dx}[(1 + x^2)^2 (1 + x)^n] = 0 + A_1 + 2A_2 x + \ldots \] Using the product rule: \[ \frac{d}{dx}[(1 + x^2)^2] \cdot (1 + x)^n + (1 + x^2)^2 \cdot \frac{d}{dx}[(1 + x)^n] \] 4. **Calculate \( A_1 \)**: Substitute \( x = 0 \) in the differentiated expression: \[ \frac{d}{dx}[(1 + x^2)^2] \bigg|_{x=0} = 2 \cdot 0 \cdot (1 + 0^2) = 0 \] \[ \frac{d}{dx}[(1 + x)^n] \bigg|_{x=0} = n \cdot 1^{n-1} = n \] Thus, \[ A_1 = n \] 5. **Differentiate Again**: Differentiate the expression again to find \( A_2 \): \[ \frac{d^2}{dx^2}[(1 + x^2)^2 (1 + x)^n] = 0 + A_2 + 2A_3 x + \ldots \] Substitute \( x = 0 \): \[ \frac{d^2}{dx^2}[(1 + x^2)^2] \bigg|_{x=0} = 4 \] The second derivative of \( (1 + x)^n \) at \( x = 0 \) gives: \[ n(n-1) \] Thus, \[ A_2 = 4 + n(n-1) \] 6. **Set Up the A.P. Condition**: Since \( A_0, A_1, A_2 \) are in A.P., we have: \[ 2A_1 = A_0 + A_2 \] Substituting the values: \[ 2n = 1 + (4 + n(n-1)) \] Simplifying gives: \[ 2n = 5 + n^2 - n \] Rearranging: \[ n^2 - 3n + 5 = 0 \] 7. **Solve the Quadratic Equation**: Using the quadratic formula: \[ n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{3 \pm \sqrt{(-3)^2 - 4 \cdot 1 \cdot 5}}{2 \cdot 1} \] \[ = \frac{3 \pm \sqrt{9 - 20}}{2} = \frac{3 \pm \sqrt{-11}}{2} \] Since the discriminant is negative, there are no real solutions. ### Conclusion: The values of \( n \) that satisfy the condition are \( n = 2 \) and \( n = 3 \).
Promotional Banner

Topper's Solved these Questions

  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise LEVEL-2|34 Videos
  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise JEE MAIN & Advance ( ARCHIVE)|46 Videos
  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise JEE MAIN & Advance ( ARCHIVE)|46 Videos
  • REVISION TEST-2 JEE

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos
  • STRAIGHT LINES

    VMC MODULES ENGLISH|Exercise JEE Advanced Archive (State true or false: Q. 42)|1 Videos

Similar Questions

Explore conceptually related problems

Let (1+x^2)^2(1+x)^n=A_0+A_1x+A_2x^2+…."if" A_0A_1A_2 are in A.P then the value of n is

Let n in N . If (1 + x)^n = a_0 + a_1 x + a_2x^2+…. + a_nx^n and a_(n-3), a_(n-2) , a_(n-1) are in A.P then Statement - I : a_1, a_2, a_3 are in A.P. Statement -II : n = 7 The true statements are :

Let (1+x^2)^2 . (1+x)^n = Sigma_(k=0)^(n+4) (a_k).x ^k "if" a_1,a_2 & a_3 are in AP find n

If (1 +x+x^2)^25 = a_0 + a_1x+ a_2x^2 +..... + a_50.x^50 then a_0 + a_2 + a_4 + ... + a_50 is :

Let (1+x^2)^2(1+x)^n=sum_(k=0)^(n+4)a_k x^k . If a_1 , a_2 and a_3 are in arithmetic progression, then the possible value/values of n is/are a. 5 b. 4 c. 3 d. 2

If (1+x+x^2)^n = a_0+a_1x+a_2x_2 +..............+a_(2n)x^(2n) then the value of a_1+a_4+a_7+.........

If (1+2x +3x^2)^10 = a_0 +a_1x +a_2x^2 + ……+a_20x^20 then a_1 = ?

If (x+10)^50+(x−10)^50=a_0+a_1 x+a_2x^2+........a_50x^2+...........+a_50x^50 then the value of a2/a0 is equal to (A) 12.25 (B) 12.75 (C) 11.75 (D) 11.25

If (3 + 7x - 9x^2)^n = a_0 +a_1x + a_2 x^2 + ……+a_(2n)x^(2n) prove the a_0 +a_1 +a_2 + ……+a_(2n) = 1

"If" n in "and if "(1+ 4x +4 x^2)^n=Sigma_(r=0)^(2n) a_rx^r, "where" a_0,a_1,a_2,.....a_(2n) "are real number" The value of a_(2n-1)is

VMC MODULES ENGLISH-SEQUENCE AND SERIES -LEVEL-1
  1. Sum to infinity of the series 2/3 - 5/6 + 2/3 -11/24 +….. Is

    Text Solution

    |

  2. If a ,a1, a2, a3, a(2n),b are in A.P. and a ,g1,g2,g3, ,g(2n),b . are...

    Text Solution

    |

  3. If I(r)=r(r^2-1), then sum(r=2)^n 1/(I(r)) is equal to

    Text Solution

    |

  4. If sum(r=1)^n Tr=n(2n^2+9n+13), then find the sum sum(r=1)^nsqrt(Tr)do...

    Text Solution

    |

  5. Let (1 + x^2)^2 (1 + x)^n = A0 +A1 x+A2 x^2 + ...... If A0, A1, A2, a...

    Text Solution

    |

  6. If 1/1^3 + (1+2)/(1^3+2^3)+(1+2+3)/(1^3+2^3+3^3) +.......n terms then ...

    Text Solution

    |

  7. If x1, x2, x3,...... x (2n) are in A.P, then sum (r=1)^(2n) (-1)^(r...

    Text Solution

    |

  8. If (a2a3)/(a1a4) = (a2+a3)/(a1+a4)=3 ((a2 -a3)/(a1-a4)) then a1,a2, a3...

    Text Solution

    |

  9. In the sequence 1,2,2,4,4,4,4,8,8,8,8,8,8,8,8, . . . . . ., where n co...

    Text Solution

    |

  10. The coefficient of x^15 in the product (1-x)(1-2x) (1-2^2 x) (1-2^3 ...

    Text Solution

    |

  11. Let a1=0 and a1,a2,a3 …. , an be real numbers such that |ai|=|a(i-1) ...

    Text Solution

    |

  12. Find the sum of the products of the ten numbers pm1,pm2,pm3,pm4, and p...

    Text Solution

    |

  13. If 1/1^4+1/2^4+1/3^4+...+oo=pi^4/90, then 1/1^4+1/3^4+1/5^4+...+oo=

    Text Solution

    |

  14. If n is an odd integer greater than or equal to 1, the value of =n^(3)...

    Text Solution

    |

  15. Let S(k) =sum( i =0) ^(oo) (1)/((k +1)^(t)), then sum (k =1) ^(n) kS(...

    Text Solution

    |

  16. about to only mathematics

    Text Solution

    |

  17. ABC is a right-angled triangle in which angleB=90^(@) and BC=a. If n p...

    Text Solution

    |

  18. If a ,b ,a n dc are in A.P. p ,q ,a n dr are in H.P., and a p ,b q ,a ...

    Text Solution

    |

  19. Given that alpha, gamma are roots of the equation Ax^(2)-4x+1=0 and be...

    Text Solution

    |

  20. sum(r=1)^n (r^2 - r-1)/((r+1)!) is equal to :

    Text Solution

    |