Home
Class 12
MATHS
If 1/1^3 + (1+2)/(1^3+2^3)+(1+2+3)/(1^3+...

If `1/1^3 + (1+2)/(1^3+2^3)+(1+2+3)/(1^3+2^3+3^3) +.......n` terms then `lim_(n->oo) [S_n]`

A

2

B

1

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step-by-step, we will analyze the series given and find the limit as \( n \) approaches infinity. ### Step 1: Define the \( n \)-th term of the series The \( n \)-th term \( T_n \) of the series can be expressed as: \[ T_n = \frac{1 + 2 + 3 + \ldots + n}{1^3 + 2^3 + 3^3 + \ldots + n^3} \] ### Step 2: Use the formula for the sum of the first \( n \) natural numbers The sum of the first \( n \) natural numbers is given by: \[ 1 + 2 + 3 + \ldots + n = \frac{n(n + 1)}{2} \] ### Step 3: Use the formula for the sum of the cubes of the first \( n \) natural numbers The sum of the cubes of the first \( n \) natural numbers is given by: \[ 1^3 + 2^3 + 3^3 + \ldots + n^3 = \left(\frac{n(n + 1)}{2}\right)^2 \] ### Step 4: Substitute these sums into \( T_n \) Substituting the formulas from Steps 2 and 3 into \( T_n \): \[ T_n = \frac{\frac{n(n + 1)}{2}}{\left(\frac{n(n + 1)}{2}\right)^2} \] ### Step 5: Simplify \( T_n \) Simplifying \( T_n \): \[ T_n = \frac{\frac{n(n + 1)}{2}}{\frac{n^2(n + 1)^2}{4}} = \frac{4}{n(n + 1)} \] ### Step 6: Find the sum \( S_n \) The sum \( S_n \) is the summation of \( T_n \) from \( 1 \) to \( n \): \[ S_n = \sum_{k=1}^{n} T_k = \sum_{k=1}^{n} \frac{4}{k(k + 1)} \] ### Step 7: Simplify the summation using partial fractions Using partial fractions, we can write: \[ \frac{4}{k(k + 1)} = 4\left(\frac{1}{k} - \frac{1}{k + 1}\right) \] Thus, \[ S_n = 4\sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k + 1}\right) \] ### Step 8: Evaluate the telescoping series The series telescopes: \[ S_n = 4\left(1 - \frac{1}{n + 1}\right) = 4\left(\frac{n}{n + 1}\right) \] ### Step 9: Take the limit as \( n \) approaches infinity Now we find the limit: \[ \lim_{n \to \infty} S_n = \lim_{n \to \infty} 4\left(\frac{n}{n + 1}\right) = \lim_{n \to \infty} 4\left(\frac{1}{1 + \frac{1}{n}}\right) \] As \( n \) approaches infinity, \( \frac{1}{n} \) approaches \( 0 \): \[ \lim_{n \to \infty} S_n = 4 \cdot 1 = 4 \] ### Final Answer Thus, the limit of the series as \( n \) approaches infinity is: \[ \boxed{4} \]
Promotional Banner

Topper's Solved these Questions

  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise LEVEL-2|34 Videos
  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise JEE MAIN & Advance ( ARCHIVE)|46 Videos
  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise JEE MAIN & Advance ( ARCHIVE)|46 Videos
  • REVISION TEST-2 JEE

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos
  • STRAIGHT LINES

    VMC MODULES ENGLISH|Exercise JEE Advanced Archive (State true or false: Q. 42)|1 Videos

Similar Questions

Explore conceptually related problems

If S_n=1/1^3 +(1+2)/(1^3+2^3)+...+(1+2+3+...+n)/(1^3+2^3+3^3+...+n^3) Then S_n is not greater than

Evaluate lim _( x to oo) ((1^(2) )/(n ^(3) +1 ^(3))+(2 ^(2))/(n ^(3) +2 ^(3)) + (3 ^(2))/(n ^(3)+ 3 ^(3))+ .... + (4)/(9n)).

Let H_(n)=1+(1)/(2)+(1)/(3)+ . . . . .+(1)/(n) , then the sum to n terms of the series (1^(2))/(1^(3))+(1^(2)+2^(2))/(1^(3)+2^(3))+(1^(2)+2^(2)+3^(2))/(1^(3)+2^(3)+3^(3))+ . . . , is

lim_(n->oo)[(1+1/n^2)(1+2^2 /n^2)(1+3^2 /n^2)......(1+n^2 / n^2)]^(1/n)

Find the sum of G.P. : 1-(1)/(3)+(1)/(3^(2))-(1)/(3^(3))+ . . . .. . . . . to n terms.

The value of lim_(n to oo)((1)/(1^(3)+n^(3))+(2^(2))/(2^(3)+n^(3))+..........+(n^(2))/(n^(3)+n^(3))) is :

If S_(n)=(1^(2).(2))/(1!)+(2^(2).3)/(2!)+(3^(2).4)/(3!)+…(n^(2).(n+1))/(n!) then lim_(n rarr infty) S_(n) is equal to

If t_(r)=(1^(2)+2^(2)+3^(2)+….+r^(2))/(1^(3)+2^(3)+3^(3)+…+r^(3)), S_(n)=sum_(r=1)^(n)(-1)^(r)t_(r) , then lim_(nrarroo)((1)/(3-S_(n)))=

lim_(nrarroo) ((1^(k)+2^(k)+3^(k)+"......"n^(k)))/((1^(2)+2^(2)+"....."+n^(2))(1^(3)+2^(3)+"....."+n^(3))) = F(k) , then (k in N)

The value of lim_(n->oo) (1^2 . n+2^2.(n-1)+......+n^2 . 1)/(1^3+2^3+......+n^3) is equal to

VMC MODULES ENGLISH-SEQUENCE AND SERIES -LEVEL-1
  1. Sum to infinity of the series 2/3 - 5/6 + 2/3 -11/24 +….. Is

    Text Solution

    |

  2. If a ,a1, a2, a3, a(2n),b are in A.P. and a ,g1,g2,g3, ,g(2n),b . are...

    Text Solution

    |

  3. If I(r)=r(r^2-1), then sum(r=2)^n 1/(I(r)) is equal to

    Text Solution

    |

  4. If sum(r=1)^n Tr=n(2n^2+9n+13), then find the sum sum(r=1)^nsqrt(Tr)do...

    Text Solution

    |

  5. Let (1 + x^2)^2 (1 + x)^n = A0 +A1 x+A2 x^2 + ...... If A0, A1, A2, a...

    Text Solution

    |

  6. If 1/1^3 + (1+2)/(1^3+2^3)+(1+2+3)/(1^3+2^3+3^3) +.......n terms then ...

    Text Solution

    |

  7. If x1, x2, x3,...... x (2n) are in A.P, then sum (r=1)^(2n) (-1)^(r...

    Text Solution

    |

  8. If (a2a3)/(a1a4) = (a2+a3)/(a1+a4)=3 ((a2 -a3)/(a1-a4)) then a1,a2, a3...

    Text Solution

    |

  9. In the sequence 1,2,2,4,4,4,4,8,8,8,8,8,8,8,8, . . . . . ., where n co...

    Text Solution

    |

  10. The coefficient of x^15 in the product (1-x)(1-2x) (1-2^2 x) (1-2^3 ...

    Text Solution

    |

  11. Let a1=0 and a1,a2,a3 …. , an be real numbers such that |ai|=|a(i-1) ...

    Text Solution

    |

  12. Find the sum of the products of the ten numbers pm1,pm2,pm3,pm4, and p...

    Text Solution

    |

  13. If 1/1^4+1/2^4+1/3^4+...+oo=pi^4/90, then 1/1^4+1/3^4+1/5^4+...+oo=

    Text Solution

    |

  14. If n is an odd integer greater than or equal to 1, the value of =n^(3)...

    Text Solution

    |

  15. Let S(k) =sum( i =0) ^(oo) (1)/((k +1)^(t)), then sum (k =1) ^(n) kS(...

    Text Solution

    |

  16. about to only mathematics

    Text Solution

    |

  17. ABC is a right-angled triangle in which angleB=90^(@) and BC=a. If n p...

    Text Solution

    |

  18. If a ,b ,a n dc are in A.P. p ,q ,a n dr are in H.P., and a p ,b q ,a ...

    Text Solution

    |

  19. Given that alpha, gamma are roots of the equation Ax^(2)-4x+1=0 and be...

    Text Solution

    |

  20. sum(r=1)^n (r^2 - r-1)/((r+1)!) is equal to :

    Text Solution

    |