Home
Class 12
MATHS
If (a2a3)/(a1a4) = (a2+a3)/(a1+a4)=3 ((a...

If `(a_2a_3)/(a_1a_4) = (a_2+a_3)/(a_1+a_4)=3 ((a_2 -a_3)/(a_1-a_4))` then `a_1,a_2, a_3 , a_4` are in :

A

A.P.

B

G.P

C

H.P.

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given equations: 1. \(\frac{a_2 a_3}{a_1 a_4} = \frac{a_2 + a_3}{a_1 + a_4} = 3 \cdot \frac{a_2 - a_3}{a_1 - a_4}\) Let's denote this common value as \(k\). Thus, we can write: \[ \frac{a_2 a_3}{a_1 a_4} = k \] \[ \frac{a_2 + a_3}{a_1 + a_4} = k \] \[ 3 \cdot \frac{a_2 - a_3}{a_1 - a_4} = k \] ### Step 1: Equating the first two equations From the first two equations, we have: \[ \frac{a_2 a_3}{a_1 a_4} = \frac{a_2 + a_3}{a_1 + a_4} \] Cross-multiplying gives: \[ a_2 a_3 (a_1 + a_4) = (a_2 + a_3) a_1 a_4 \] Expanding both sides: \[ a_2 a_3 a_1 + a_2 a_3 a_4 = a_2 a_1 a_4 + a_3 a_1 a_4 \] Rearranging terms: \[ a_2 a_3 a_1 + a_2 a_3 a_4 - a_2 a_1 a_4 - a_3 a_1 a_4 = 0 \] ### Step 2: Rearranging the equation Rearranging gives: \[ a_2 a_3 a_1 + a_2 a_3 a_4 = a_2 a_1 a_4 + a_3 a_1 a_4 \] Factoring out common terms: \[ a_4 (a_2 a_1 - a_3 a_1) = a_2 a_3 (a_1 - a_4) \] ### Step 3: Equating the second and third equations Now, let's take the second and third equations: \[ \frac{a_2 + a_3}{a_1 + a_4} = 3 \cdot \frac{a_2 - a_3}{a_1 - a_4} \] Cross-multiplying gives: \[ (a_2 + a_3)(a_1 - a_4) = 3(a_2 - a_3)(a_1 + a_4) \] Expanding both sides: \[ a_2 a_1 - a_2 a_4 + a_3 a_1 - a_3 a_4 = 3(a_2 a_1 + a_2 a_4 - a_3 a_1 - a_3 a_4) \] ### Step 4: Rearranging and simplifying Rearranging gives: \[ a_2 a_1 - a_2 a_4 + a_3 a_1 - a_3 a_4 - 3(a_2 a_1 + a_2 a_4 - a_3 a_1 - a_3 a_4) = 0 \] This can be simplified to find a relationship between \(a_1, a_2, a_3, a_4\). ### Step 5: Conclusion From the derived equations, we can see that the terms \( \frac{1}{a_1}, \frac{1}{a_2}, \frac{1}{a_3}, \frac{1}{a_4} \) are in Arithmetic Progression (AP). Therefore, the original terms \( a_1, a_2, a_3, a_4 \) are in Harmonic Progression (HP). Thus, the answer is that \( a_1, a_2, a_3, a_4 \) are in **Harmonic Progression (HP)**.
Promotional Banner

Topper's Solved these Questions

  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise LEVEL-2|34 Videos
  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise JEE MAIN & Advance ( ARCHIVE)|46 Videos
  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise JEE MAIN & Advance ( ARCHIVE)|46 Videos
  • REVISION TEST-2 JEE

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos
  • STRAIGHT LINES

    VMC MODULES ENGLISH|Exercise JEE Advanced Archive (State true or false: Q. 42)|1 Videos

Similar Questions

Explore conceptually related problems

If a_1,a_2,a_3,………….a_12 are in A.P. and /_\_1 =|(a_1a_5, a_1,a_2),(a_2a_6,a_2,a_3),(a_3a_7,a_3,a_4)|, /_\_2 =|(a_2a_10, a_2,a_3),(a_3a_11,a_3,a_4),(a_4a_12,a_4,a_5)| then /_\_1:/_\_2= (A) 1:2 (B) 2:1 (C) 1:1 (D) none of these

If a_0, a_1, a_2, a_3 are all the positive, then 4a_0x^3+3a_1x^2+2a_2x+a_3=0 has least one root in (-1,0) if (a) a_0+a_2=a_1+a_3 and 4a_0+2a_2>3a_1+a_3 (b) 4a_0+2a_2<3a_1+a_3 (c) 4a_0+2a_2=3a_1+a_0 and 4a_0+a_2lta_1+a_3 (d) none of these

If x,a_1,a_2,a_3,…..a_n epsilon R and (x-a_1+a_2)^2+(x-a_2+a_3)^2+…….+(x-a_(n-1)+a_n)^2le0 , then a_1,a_2,a_3………a_n are in (A) AP (B) GP (C) HP (D) none of these

If a_iepsilon R-[0},i=1,2,3,4 and xepsilon R and (sum_(i=1)^ a_i^2) x^2-2x(sum_(i=)^3 a_ia_(i+1)+)+sum_(i=2)^4 a_i^2ge0 then a_1,a_2,a_3,a_4 are in (A) A.P. (B) G.P. (C) H.P. (D) none of these

If a_1, a_2, ,a_n are in H.P., then (a_1)/(a_2+a_3++a_n),(a_2)/(a_1+a_3++a_n), ,(a_n)/(a_1+a_2++a_(n-1)) are in a. A.P b. G.P. c. H.P. d. none of these

Evaluate: /_\ |[1+a_1, a_2, a_3],[a_1, 1+a_2, a_3],[a_1, a_2, 1+a_3]|

Evaluate: /_\ |[1+a_1, a_2, a_3],[a_1, 1+a_2, a_3],[a_1, a_2, 1+a_3]|

If a_1, a_2, a_3,.....a_n are in H.P. and a_1 a_2+a_2 a_3+a_3 a_4+.......a_(n-1) a_n=ka_1 a_n , then k is equal to

The equation A/(x-a_1)+A_2/(x-a_2)+A_3/(x-a_3)=0 ,where A_1,A_2,A_3gt0 and a_1lta_2lta_3 has two real roots lying in the invervals. (A) (a_1,a_2) and (a_2,a_3) (B) (-oo,a_1) and (a_3,oo) (C) (A_1,A_3) and (A_2,A_3) (D) none of these

If a_1,a_2,a_3,……a_n are in A.P. [1/(a_1a_n)+1/(a_2a_(n-1))+1/(a_3a_(n-2))+..+1/(a_na_1)]

VMC MODULES ENGLISH-SEQUENCE AND SERIES -LEVEL-1
  1. Sum to infinity of the series 2/3 - 5/6 + 2/3 -11/24 +….. Is

    Text Solution

    |

  2. If a ,a1, a2, a3, a(2n),b are in A.P. and a ,g1,g2,g3, ,g(2n),b . are...

    Text Solution

    |

  3. If I(r)=r(r^2-1), then sum(r=2)^n 1/(I(r)) is equal to

    Text Solution

    |

  4. If sum(r=1)^n Tr=n(2n^2+9n+13), then find the sum sum(r=1)^nsqrt(Tr)do...

    Text Solution

    |

  5. Let (1 + x^2)^2 (1 + x)^n = A0 +A1 x+A2 x^2 + ...... If A0, A1, A2, a...

    Text Solution

    |

  6. If 1/1^3 + (1+2)/(1^3+2^3)+(1+2+3)/(1^3+2^3+3^3) +.......n terms then ...

    Text Solution

    |

  7. If x1, x2, x3,...... x (2n) are in A.P, then sum (r=1)^(2n) (-1)^(r...

    Text Solution

    |

  8. If (a2a3)/(a1a4) = (a2+a3)/(a1+a4)=3 ((a2 -a3)/(a1-a4)) then a1,a2, a3...

    Text Solution

    |

  9. In the sequence 1,2,2,4,4,4,4,8,8,8,8,8,8,8,8, . . . . . ., where n co...

    Text Solution

    |

  10. The coefficient of x^15 in the product (1-x)(1-2x) (1-2^2 x) (1-2^3 ...

    Text Solution

    |

  11. Let a1=0 and a1,a2,a3 …. , an be real numbers such that |ai|=|a(i-1) ...

    Text Solution

    |

  12. Find the sum of the products of the ten numbers pm1,pm2,pm3,pm4, and p...

    Text Solution

    |

  13. If 1/1^4+1/2^4+1/3^4+...+oo=pi^4/90, then 1/1^4+1/3^4+1/5^4+...+oo=

    Text Solution

    |

  14. If n is an odd integer greater than or equal to 1, the value of =n^(3)...

    Text Solution

    |

  15. Let S(k) =sum( i =0) ^(oo) (1)/((k +1)^(t)), then sum (k =1) ^(n) kS(...

    Text Solution

    |

  16. about to only mathematics

    Text Solution

    |

  17. ABC is a right-angled triangle in which angleB=90^(@) and BC=a. If n p...

    Text Solution

    |

  18. If a ,b ,a n dc are in A.P. p ,q ,a n dr are in H.P., and a p ,b q ,a ...

    Text Solution

    |

  19. Given that alpha, gamma are roots of the equation Ax^(2)-4x+1=0 and be...

    Text Solution

    |

  20. sum(r=1)^n (r^2 - r-1)/((r+1)!) is equal to :

    Text Solution

    |