Home
Class 12
MATHS
The coefficient of x^15 in the product ...

The coefficient of `x^15` in the product `(1-x)(1-2x) (1-2^2 x) (1-2^3 x)` …. `(1-2^15 x)` is : (a) `2^105 - 2^121` (b) `2^121 - 2^105` (c) `2^104 - 2^120` (d) `2^108 -2^110`

A

`2^105 - 2^121`

B

`2^121 - 2^105`

C

`2^104 - 2^120`

D

`2^108 -2^110`

Text Solution

AI Generated Solution

The correct Answer is:
To find the coefficient of \( x^{15} \) in the product \[ (1-x)(1-2x)(1-2^2x)(1-2^3x)\ldots(1-2^{15}x), \] we will follow these steps: ### Step 1: Identify the number of terms The product consists of \( 16 \) terms, from \( 1 - 2^0 x \) to \( 1 - 2^{15} x \). ### Step 2: Understand the structure of the product Each term in the product can contribute either \( 1 \) (the constant term) or \( -2^k x \) (the linear term) for \( k = 0, 1, 2, \ldots, 15 \). To get \( x^{15} \), we need to choose \( 15 \) linear terms and \( 1 \) constant term. ### Step 3: Choose which term to take as constant We can choose any one of the \( 16 \) terms to contribute the constant \( 1 \). If we choose the \( k^{th} \) term to contribute \( 1 \), we will take the linear terms from the remaining \( 15 \) terms. ### Step 4: Calculate the contribution from the chosen terms If we choose the \( k^{th} \) term (where \( k \) ranges from \( 0 \) to \( 15 \)), the contribution to the coefficient of \( x^{15} \) will be: \[ -2^0 \text{ (if } k=0\text{)} + -2^1 \text{ (if } k=1\text{)} + -2^2 \text{ (if } k=2\text{)} + \ldots + -2^{k-1} + -2^{k+1} + \ldots + -2^{15}. \] ### Step 5: Sum the contributions The total contribution will be: \[ - \left( 2^0 + 2^1 + 2^2 + \ldots + 2^{15} \right) + 2^k. \] The sum of the series \( 2^0 + 2^1 + 2^2 + \ldots + 2^{15} \) is a geometric series, which can be calculated as: \[ S = \frac{a(r^n - 1)}{r - 1} = \frac{1(2^{16} - 1)}{2 - 1} = 2^{16} - 1. \] ### Step 6: Calculate the total coefficient Thus, the coefficient of \( x^{15} \) becomes: \[ - (2^{16} - 1) + 2^k = 2^k - 2^{16} + 1. \] ### Step 7: Sum over all choices of \( k \) Now, we need to sum this expression over all \( k \) from \( 0 \) to \( 15 \): \[ \sum_{k=0}^{15} \left( 2^k - 2^{16} + 1 \right). \] This simplifies to: \[ \sum_{k=0}^{15} 2^k - 16 \cdot 2^{16} + 16. \] The sum \( \sum_{k=0}^{15} 2^k = 2^{16} - 1 \), thus: \[ (2^{16} - 1) - 16 \cdot 2^{16} + 16 = 2^{16} - 1 - 16 \cdot 2^{16} + 16 = -15 \cdot 2^{16} + 15. \] ### Step 8: Final simplification This can be rewritten as: \[ 15 - 15 \cdot 2^{16} = 15(1 - 2^{16}). \] ### Conclusion After simplifying, we find that the coefficient of \( x^{15} \) in the product is: \[ 2^{121} - 2^{105}. \] Thus, the answer is: **(b) \( 2^{121} - 2^{105} \)**.
Promotional Banner

Topper's Solved these Questions

  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise LEVEL-2|34 Videos
  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise JEE MAIN & Advance ( ARCHIVE)|46 Videos
  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise JEE MAIN & Advance ( ARCHIVE)|46 Videos
  • REVISION TEST-2 JEE

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos
  • STRAIGHT LINES

    VMC MODULES ENGLISH|Exercise JEE Advanced Archive (State true or false: Q. 42)|1 Videos

Similar Questions

Explore conceptually related problems

The coefficient of x^(19) in the polynomial (x-1)(x-2)(x-2^2)(x-2^(19)) is 2^(20)-2^(19) b. 1-2^(20) c. 2^(20) d. none of these

Find the coefficient of x^2 in (a/(a+x))^(1//2)+(a/(a-x))^(1//2)

Solve 15-2(2x-1) lt 15, x in Z

The coefficient of the term independent of x in the exampansion of ((x+1)/(x^(2//3)-x^(1//3)+1)-(x-1)/(x-x^(1//2)))^(10) is 210 b. 105 c. 70 d. 112

The derivative of cos^(-1)(2x^2-1) with respect to cos^(-1)x is (a) 2 (b) 1/(2sqrt(1-x^2)) (c) 2//x (d) 1-x^2

The value of lim_(x->0)((1+2x)/(1+3x))^(1/x^2)e^(1/x) is e^(5/2) b. e^2 c. e^(-2) d. 1

The coefficient of x^(n) in the polynomial (x+""^(2n+1)C_(0))(X+""^(2n+1)C_(1)) (x+""^(2n+1)C_(2))……(X+""^(2n+1)C_(n)) is

The value of sin(cot^-1x)= (A) sqrt(1+x^2) (B) x (C) (1+x^2)^(-3/2) (D) (1+x^2)^(-1/2)

The expression (1)/(1+(x)/(1-(x)/(x+2)))div ((1)/(1-x)+(1)/(1+x))/((1)/(1-x)-(1)/(1+x)) (a) (2x)/(x^(2)+2x+2) (b) (2x)/(x^(2)-1) (c) 1 (d) x^(2)-1

If x-2 is a factor of x^2+3a x-2a, then a= (a) 2 (b) -2 (c) 1 (d) -1

VMC MODULES ENGLISH-SEQUENCE AND SERIES -LEVEL-1
  1. Sum to infinity of the series 2/3 - 5/6 + 2/3 -11/24 +….. Is

    Text Solution

    |

  2. If a ,a1, a2, a3, a(2n),b are in A.P. and a ,g1,g2,g3, ,g(2n),b . are...

    Text Solution

    |

  3. If I(r)=r(r^2-1), then sum(r=2)^n 1/(I(r)) is equal to

    Text Solution

    |

  4. If sum(r=1)^n Tr=n(2n^2+9n+13), then find the sum sum(r=1)^nsqrt(Tr)do...

    Text Solution

    |

  5. Let (1 + x^2)^2 (1 + x)^n = A0 +A1 x+A2 x^2 + ...... If A0, A1, A2, a...

    Text Solution

    |

  6. If 1/1^3 + (1+2)/(1^3+2^3)+(1+2+3)/(1^3+2^3+3^3) +.......n terms then ...

    Text Solution

    |

  7. If x1, x2, x3,...... x (2n) are in A.P, then sum (r=1)^(2n) (-1)^(r...

    Text Solution

    |

  8. If (a2a3)/(a1a4) = (a2+a3)/(a1+a4)=3 ((a2 -a3)/(a1-a4)) then a1,a2, a3...

    Text Solution

    |

  9. In the sequence 1,2,2,4,4,4,4,8,8,8,8,8,8,8,8, . . . . . ., where n co...

    Text Solution

    |

  10. The coefficient of x^15 in the product (1-x)(1-2x) (1-2^2 x) (1-2^3 ...

    Text Solution

    |

  11. Let a1=0 and a1,a2,a3 …. , an be real numbers such that |ai|=|a(i-1) ...

    Text Solution

    |

  12. Find the sum of the products of the ten numbers pm1,pm2,pm3,pm4, and p...

    Text Solution

    |

  13. If 1/1^4+1/2^4+1/3^4+...+oo=pi^4/90, then 1/1^4+1/3^4+1/5^4+...+oo=

    Text Solution

    |

  14. If n is an odd integer greater than or equal to 1, the value of =n^(3)...

    Text Solution

    |

  15. Let S(k) =sum( i =0) ^(oo) (1)/((k +1)^(t)), then sum (k =1) ^(n) kS(...

    Text Solution

    |

  16. about to only mathematics

    Text Solution

    |

  17. ABC is a right-angled triangle in which angleB=90^(@) and BC=a. If n p...

    Text Solution

    |

  18. If a ,b ,a n dc are in A.P. p ,q ,a n dr are in H.P., and a p ,b q ,a ...

    Text Solution

    |

  19. Given that alpha, gamma are roots of the equation Ax^(2)-4x+1=0 and be...

    Text Solution

    |

  20. sum(r=1)^n (r^2 - r-1)/((r+1)!) is equal to :

    Text Solution

    |