Home
Class 12
MATHS
sum(r=1)^n (r^2 - r-1)/((r+1)!) is equal...

`sum_(r=1)^n (r^2 - r-1)/((r+1)!)` is equal to :

A

A. `n/((n+1)!)`

B

B. `(-1)/((n+1)(n-1)!)`

C

C. `n/((n+1)!)-1`

D

D. `n/((n-1)!)+1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the sum: \[ S = \sum_{r=1}^{n} \frac{r^2 - r - 1}{(r+1)!} \] ### Step 1: Simplifying the Numerator We start with the expression in the numerator, \( r^2 - r - 1 \). We can manipulate this expression by adding and subtracting \( r \): \[ r^2 - r - 1 = r^2 + r - 2r - 1 = (r^2 + r) - (2r + 1) \] ### Step 2: Rewriting the Sum Now, we can rewrite the sum \( S \): \[ S = \sum_{r=1}^{n} \frac{(r^2 + r) - (2r + 1)}{(r+1)!} \] This can be separated into two sums: \[ S = \sum_{r=1}^{n} \frac{r^2 + r}{(r+1)!} - \sum_{r=1}^{n} \frac{2r + 1}{(r+1)!} \] ### Step 3: Simplifying Each Term Now we will simplify each term separately. 1. **First Term:** \[ \sum_{r=1}^{n} \frac{r^2 + r}{(r+1)!} = \sum_{r=1}^{n} \frac{r(r+1)}{(r+1)!} = \sum_{r=1}^{n} \frac{r}{r!} = \sum_{r=1}^{n} \frac{1}{(r-1)!} \] This sum can be rewritten as: \[ \sum_{r=0}^{n-1} \frac{1}{r!} = e - \frac{1}{n!} \] 2. **Second Term:** \[ \sum_{r=1}^{n} \frac{2r + 1}{(r+1)!} = 2\sum_{r=1}^{n} \frac{r}{(r+1)!} + \sum_{r=1}^{n} \frac{1}{(r+1)!} \] The first part can be simplified: \[ 2\sum_{r=1}^{n} \frac{r}{(r+1)!} = 2\sum_{r=1}^{n} \frac{1}{r!} - 2\sum_{r=1}^{n} \frac{1}{(r+1)!} = 2\left(e - \frac{1}{n!}\right) - 2\left(e - \frac{1}{(n+1)!}\right) \] The second part simplifies to: \[ \sum_{r=1}^{n} \frac{1}{(r+1)!} = \sum_{r=2}^{n+1} \frac{1}{r!} = e - 1 - \frac{1}{(n+1)!} \] ### Step 4: Combining the Results Now we combine the results from both sums: \[ S = \left(e - \frac{1}{n!}\right) - \left(2\left(e - \frac{1}{n!}\right) - 2\left(e - \frac{1}{(n+1)!}\right) + e - 1 - \frac{1}{(n+1)!}\right) \] ### Step 5: Final Simplification After simplification, we can find the final expression for \( S \): \[ S = -\frac{1}{(n+1)!} \] ### Conclusion Thus, the sum \( S \) is equal to: \[ S = -\frac{1}{(n+1)(n!)} \] ### Final Answer The final answer is: \[ -\frac{1}{(n+1) \cdot n!} \]
Promotional Banner

Topper's Solved these Questions

  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise LEVEL-2|34 Videos
  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise JEE MAIN & Advance ( ARCHIVE)|46 Videos
  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise JEE MAIN & Advance ( ARCHIVE)|46 Videos
  • REVISION TEST-2 JEE

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos
  • STRAIGHT LINES

    VMC MODULES ENGLISH|Exercise JEE Advanced Archive (State true or false: Q. 42)|1 Videos

Similar Questions

Explore conceptually related problems

(sum_(r=1)^n r^4)/(sum_(r=1)^n r^2) is equal to

If sum of x terms of a series is S_(x)=(1)/((2x+3)(2x+1)) whose r^(th) term is T_(r) . Then, sum_(r=1)^(n) (1)/(T_(r)) is equal to

lim_(xto1) (sum_(r=1)^(n)x^(r)-n)/(x-1) is equal to

If sum_(r=1)^n I(r)=(3^n -1) , then sum_(r=1)^n 1/(I(r)) is equal to :

The value of the lim_(n->oo)tan{sum_(r=1)^ntan^(- 1)(1/(2r^2))} is equal to

The sum sum_(r=0)^n (r+1) (C_r)^2 is equal to :

If n is an odd natural number, then sum_(r=0)^n (-1)^r/(nC_r) is equal to

sum_(r=1)^n r (n-r +1) is equal to :

If I(r)=r(r^2-1) , then sum_(r=2)^n 1/(I(r)) is equal to

sum_(r=1)^(n) 1/(log_(2^(r))4) is equal to

VMC MODULES ENGLISH-SEQUENCE AND SERIES -LEVEL-1
  1. Sum to infinity of the series 2/3 - 5/6 + 2/3 -11/24 +….. Is

    Text Solution

    |

  2. If a ,a1, a2, a3, a(2n),b are in A.P. and a ,g1,g2,g3, ,g(2n),b . are...

    Text Solution

    |

  3. If I(r)=r(r^2-1), then sum(r=2)^n 1/(I(r)) is equal to

    Text Solution

    |

  4. If sum(r=1)^n Tr=n(2n^2+9n+13), then find the sum sum(r=1)^nsqrt(Tr)do...

    Text Solution

    |

  5. Let (1 + x^2)^2 (1 + x)^n = A0 +A1 x+A2 x^2 + ...... If A0, A1, A2, a...

    Text Solution

    |

  6. If 1/1^3 + (1+2)/(1^3+2^3)+(1+2+3)/(1^3+2^3+3^3) +.......n terms then ...

    Text Solution

    |

  7. If x1, x2, x3,...... x (2n) are in A.P, then sum (r=1)^(2n) (-1)^(r...

    Text Solution

    |

  8. If (a2a3)/(a1a4) = (a2+a3)/(a1+a4)=3 ((a2 -a3)/(a1-a4)) then a1,a2, a3...

    Text Solution

    |

  9. In the sequence 1,2,2,4,4,4,4,8,8,8,8,8,8,8,8, . . . . . ., where n co...

    Text Solution

    |

  10. The coefficient of x^15 in the product (1-x)(1-2x) (1-2^2 x) (1-2^3 ...

    Text Solution

    |

  11. Let a1=0 and a1,a2,a3 …. , an be real numbers such that |ai|=|a(i-1) ...

    Text Solution

    |

  12. Find the sum of the products of the ten numbers pm1,pm2,pm3,pm4, and p...

    Text Solution

    |

  13. If 1/1^4+1/2^4+1/3^4+...+oo=pi^4/90, then 1/1^4+1/3^4+1/5^4+...+oo=

    Text Solution

    |

  14. If n is an odd integer greater than or equal to 1, the value of =n^(3)...

    Text Solution

    |

  15. Let S(k) =sum( i =0) ^(oo) (1)/((k +1)^(t)), then sum (k =1) ^(n) kS(...

    Text Solution

    |

  16. about to only mathematics

    Text Solution

    |

  17. ABC is a right-angled triangle in which angleB=90^(@) and BC=a. If n p...

    Text Solution

    |

  18. If a ,b ,a n dc are in A.P. p ,q ,a n dr are in H.P., and a p ,b q ,a ...

    Text Solution

    |

  19. Given that alpha, gamma are roots of the equation Ax^(2)-4x+1=0 and be...

    Text Solution

    |

  20. sum(r=1)^n (r^2 - r-1)/((r+1)!) is equal to :

    Text Solution

    |