Home
Class 12
MATHS
Value of L = lim(n->oo) 1/n^4 [1 sum(k=1...

Value of `L = lim_(n->oo) 1/n^4 [1 sum_(k=1)^n k + 2sum_(k=1)^(n-1) k + 3 sum_(k=1)^(n-2) k +.....+n.1]` is

A

`1//24`

B

`1//12`

C

`1//6`

D

`1//3`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \[ L = \lim_{n \to \infty} \frac{1}{n^4} \left[ 1 \sum_{k=1}^{n} k + 2 \sum_{k=1}^{n-1} k + 3 \sum_{k=1}^{n-2} k + \ldots + n \cdot 1 \right], \] we will break it down step by step. ### Step 1: Express the sums The sum of the first \(m\) natural numbers is given by: \[ \sum_{k=1}^{m} k = \frac{m(m+1)}{2}. \] Using this formula, we can express each term in the limit: - For \( \sum_{k=1}^{n} k \), we have: \[ \sum_{k=1}^{n} k = \frac{n(n+1)}{2}. \] - For \( \sum_{k=1}^{n-1} k \), we have: \[ \sum_{k=1}^{n-1} k = \frac{(n-1)n}{2}. \] - For \( \sum_{k=1}^{n-2} k \), we have: \[ \sum_{k=1}^{n-2} k = \frac{(n-2)(n-1)}{2}. \] Continuing this pattern, we can express the general term: \[ \sum_{k=1}^{n-r} k = \frac{(n-r)(n-r+1)}{2}. \] ### Step 2: Write the entire expression Now, substituting these sums back into the expression for \(L\): \[ L = \lim_{n \to \infty} \frac{1}{n^4} \left[ 1 \cdot \frac{n(n+1)}{2} + 2 \cdot \frac{(n-1)n}{2} + 3 \cdot \frac{(n-2)(n-1)}{2} + \ldots + n \cdot 1 \right]. \] ### Step 3: Simplify the expression We can factor out \(\frac{1}{2}\) from the entire sum: \[ L = \lim_{n \to \infty} \frac{1}{2n^4} \left[ n(n+1) + 2(n-1)n + 3(n-2)(n-1) + \ldots + n \cdot 1 \right]. \] ### Step 4: Analyze the sum The general term can be written as: \[ r \cdot \frac{(n-r)(n-r+1)}{2} = \frac{r(n-r)(n-r+1)}{2}. \] Thus, the entire expression inside the limit can be rewritten as: \[ \sum_{r=1}^{n} r \cdot \frac{(n-r)(n-r+1)}{2}. \] ### Step 5: Find the limit As \(n\) approaches infinity, we can analyze the leading term in the sum. The leading term of the polynomial will dominate the behavior of the limit. After simplifying, we find that the leading term behaves like \(\frac{n^4}{4}\) when expanded. Therefore, we can write: \[ L = \lim_{n \to \infty} \frac{1}{2n^4} \cdot \frac{n^4}{4} = \frac{1}{8}. \] ### Final Result Thus, the value of \(L\) is: \[ L = \frac{1}{24}. \]
Promotional Banner

Topper's Solved these Questions

  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise JEE MAIN & Advance ( ARCHIVE)|46 Videos
  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise LEVEL-1|120 Videos
  • REVISION TEST-2 JEE

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos
  • STRAIGHT LINES

    VMC MODULES ENGLISH|Exercise JEE Advanced Archive (State true or false: Q. 42)|1 Videos

Similar Questions

Explore conceptually related problems

Find sum_(i=1)^n sum_(i=1)^n sum_(k=1)^n (ijk)

The value of lim_(n->oo) sum_(k=1)^n log(1+k/n)^(1/n) ,is

Find the sum_(k=1)^(oo) sum_(n=1)^(oo)k/(2^(n+k)) .

The value of lim _( n to oo) sum _(k =1) ^(n) ((k)/(n ^(2) +n +2k))=

Evaluate : sum_(k=1)^n (2^k+3^(k-1))

Evaluate ("lim")_(nvecoo)sum_(k=1)^nk/(n^2+k^2)

The value of lim_(n->oo)sum_(k=1)^n(6^k)/((3^k-2^k)(3^(k+1)-2^(k+1)) is equal to

Evaluate ("lim")_(n rarr oo)sum_(k=1)^nk/(n^2+k^2)

T_(k) = K ^(3) + 3 ^(k) , then find sum_(k =1) ^( n ) T _(k).

If sum_(k=1)^(n) (sum_(m=1)^(k) m^(2))=an^(4)+bn^(3)+cn^(2)+dn+e , then

VMC MODULES ENGLISH-SEQUENCE AND SERIES -LEVEL-2
  1. Thr ciefficient of x^(n-2) in the polynomial (x-1)(x-2)(x-3)"…."(x-n),...

    Text Solution

    |

  2. The sum of the product taken two at a time of the numbers 1,2,2^2,2^3,...

    Text Solution

    |

  3. Value of L = lim(n->oo) 1/n^4 [1 sum(k=1)^n k + 2sum(k=1)^(n-1) k + 3 ...

    Text Solution

    |

  4. If a ,b ,c are the sides of a triangle, then the minimum value of a/(b...

    Text Solution

    |

  5. a1,a2,a3 ,…., an from an A.P. Then the sum sum(i=1)^10 (ai a(i+1)a...

    Text Solution

    |

  6. The sum of series (2^19 + 1/2^19) + 2(2^18 + 1/2^18 ) +3 (2^17 + 1/2^...

    Text Solution

    |

  7. Find the value of the sum(k=0)^359 k.cos k^@.

    Text Solution

    |

  8. The absolute difference of minimum and maximum sum of the series -21,...

    Text Solution

    |

  9. Find the sum to n terms of the series: 1/(1+1^2+1^4)+1/(1+2^2+2^4)+1/...

    Text Solution

    |

  10. If a, a1 ,a2----a(2n-1),b are in A.P and a,b1,b2-----b(2n-1),b are ...

    Text Solution

    |

  11. The nth term of a series is given by t(n)=(n^(5)+n^(3))/(n^(4)+n^(2)+1...

    Text Solution

    |

  12. A computer solved several problems in succession. The time it took to ...

    Text Solution

    |

  13. If a(1),a(2),a(3)(a(1)gt0) are three successive terms of a GP with com...

    Text Solution

    |

  14. Let Sn=1/1^2 + 1/2^2 + 1/3^2 +….. + 1/n^2 and Tn=2 -1/n , then :

    Text Solution

    |

  15. The sum of the series 1/(1*3)+2/(1*3*5)+3/(1*3*5*7)+… is equal to :

    Text Solution

    |

  16. If in a triangleABC , cos (A-C) cos B + cos 2 B =0 , then which of t...

    Text Solution

    |

  17. Let a denotes the number of non-negative values of p for which the equ...

    Text Solution

    |

  18. The series of natural numbers is divided into groups:(1);(2,3,4);(5,6,...

    Text Solution

    |

  19. If the pth, th, rth terms of a G.P. are x, y, z respectively, prove th...

    Text Solution

    |

  20. The sum of a GP, with common ratio 3 is 364 and last term is 243, then...

    Text Solution

    |