Home
Class 12
MATHS
Find the value of the sum(k=0)^359 k.co...

Find the value of the `sum_(k=0)^359 k.cos k^@`.

A

`-90`

B

`-180`

C

`-270`

D

`-360`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the summation \( \sum_{k=0}^{359} k \cos(k^\circ) \), we can follow these steps: ### Step 1: Write the summation explicitly We start with the expression: \[ S = \sum_{k=0}^{359} k \cos(k^\circ) = 0 \cdot \cos(0^\circ) + 1 \cdot \cos(1^\circ) + 2 \cdot \cos(2^\circ) + \ldots + 359 \cdot \cos(359^\circ) \] ### Step 2: Utilize the property of cosine Using the property of cosine, \( \cos(k^\circ) = \cos(360^\circ - k^\circ) \), we can pair terms: \[ S = \sum_{k=0}^{179} k \cos(k^\circ) + (360-k) \cos(k^\circ) \] This means we can rewrite the sum as: \[ S = \sum_{k=0}^{179} (k \cos(k^\circ) + (360 - k) \cos(k^\circ)) \] \[ = \sum_{k=0}^{179} 360 \cos(k^\circ) \] ### Step 3: Simplify the summation Now we can factor out the constant: \[ S = 360 \sum_{k=0}^{179} \cos(k^\circ) \] ### Step 4: Evaluate the sum of cosines The sum \( \sum_{k=0}^{179} \cos(k^\circ) \) can be evaluated using the formula for the sum of cosines: \[ \sum_{k=0}^{n} \cos(k \theta) = \frac{\sin\left(\frac{(n+1)\theta}{2}\right) \cos\left(\frac{n\theta}{2}\right)}{\sin\left(\frac{\theta}{2}\right)} \] For \( n = 179 \) and \( \theta = 1^\circ \): \[ \sum_{k=0}^{179} \cos(k^\circ) = \frac{\sin\left(90^\circ\right) \cos\left(89.5^\circ\right)}{\sin\left(0.5^\circ\right)} \] Since \( \sin(90^\circ) = 1 \): \[ = \frac{\cos(89.5^\circ)}{\sin(0.5^\circ)} \] ### Step 5: Note the symmetry Notice that \( \cos(89.5^\circ) \) is very small, and the sum from \( 0^\circ \) to \( 179^\circ \) will have terms that cancel out due to symmetry around \( 90^\circ \). ### Step 6: Final evaluation The only non-canceling term is at \( k = 180 \): \[ S = 360 \cdot 0 + 180 \cdot (-1) = -180 \] ### Conclusion Thus, the value of the summation is: \[ \boxed{-180} \]
Promotional Banner

Topper's Solved these Questions

  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise JEE MAIN & Advance ( ARCHIVE)|46 Videos
  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise LEVEL-1|120 Videos
  • REVISION TEST-2 JEE

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos
  • STRAIGHT LINES

    VMC MODULES ENGLISH|Exercise JEE Advanced Archive (State true or false: Q. 42)|1 Videos

Similar Questions

Explore conceptually related problems

Find the value off sum_(k=1)^10(2+3^k)

Find the value lim_(n rarr oo) sum_(k=2)^(n) cos^(-1) ((1 + sqrt((k -1) k(k + 1) (k + 2)))/(k(k + 1)))

Evaluate sum_(k=0)^(5)k^(2)

Find the sum of the series sum_(k=1)^(360)(1/(ksqrt(k+1)+(k+1)sqrt(k)))

If for n in N ,sum_(k=0)^(2n)(-1)^k(^(2n)C_k)^2=A , then find the value of sum_(k=0)^(2n)(-1)^k(k-2n)(^(2n)C_k)^2dot

Find the value of underset((inejnek))(sum_(i=0)^(oo)sum_(j=0)^(oo)sum_(k=0)^(oo))1/(3^(i)3^(j)3^(k)) .

The value of the expression (sum_(r=0)^10 "^10 C_r)(sum_(k=0)^10 (-1)^k (^10 C_k)/2^k) is :

Find the sum sum_(k=0)^(10).^(20)C_k .

Find the value of k , if the point P(0,\ 2) is equidistant from (3,\ k) and (k ,\ 5) .

sum_(k=0)^(5)(-1)^(k)2k

VMC MODULES ENGLISH-SEQUENCE AND SERIES -LEVEL-2
  1. a1,a2,a3 ,…., an from an A.P. Then the sum sum(i=1)^10 (ai a(i+1)a...

    Text Solution

    |

  2. The sum of series (2^19 + 1/2^19) + 2(2^18 + 1/2^18 ) +3 (2^17 + 1/2^...

    Text Solution

    |

  3. Find the value of the sum(k=0)^359 k.cos k^@.

    Text Solution

    |

  4. The absolute difference of minimum and maximum sum of the series -21,...

    Text Solution

    |

  5. Find the sum to n terms of the series: 1/(1+1^2+1^4)+1/(1+2^2+2^4)+1/...

    Text Solution

    |

  6. If a, a1 ,a2----a(2n-1),b are in A.P and a,b1,b2-----b(2n-1),b are ...

    Text Solution

    |

  7. The nth term of a series is given by t(n)=(n^(5)+n^(3))/(n^(4)+n^(2)+1...

    Text Solution

    |

  8. A computer solved several problems in succession. The time it took to ...

    Text Solution

    |

  9. If a(1),a(2),a(3)(a(1)gt0) are three successive terms of a GP with com...

    Text Solution

    |

  10. Let Sn=1/1^2 + 1/2^2 + 1/3^2 +….. + 1/n^2 and Tn=2 -1/n , then :

    Text Solution

    |

  11. The sum of the series 1/(1*3)+2/(1*3*5)+3/(1*3*5*7)+… is equal to :

    Text Solution

    |

  12. If in a triangleABC , cos (A-C) cos B + cos 2 B =0 , then which of t...

    Text Solution

    |

  13. Let a denotes the number of non-negative values of p for which the equ...

    Text Solution

    |

  14. The series of natural numbers is divided into groups:(1);(2,3,4);(5,6,...

    Text Solution

    |

  15. If the pth, th, rth terms of a G.P. are x, y, z respectively, prove th...

    Text Solution

    |

  16. The sum of a GP, with common ratio 3 is 364 and last term is 243, then...

    Text Solution

    |

  17. Let a1,a2 , …, a10 be in AP and h1,h2,,,, h10 be in HP. If a1=h1=...

    Text Solution

    |

  18. The harmonic mean of the roots of the equation (5+sqrt(2))x^2-(4+sqrt(...

    Text Solution

    |

  19. If a,x and b are in AP, a,y and b are in GP and a,z and b are in...

    Text Solution

    |

  20. Find the sum to n terms of the series :1/(1xx2)+1/(2xx3)+1/(3xx4)+dotd...

    Text Solution

    |