Home
Class 12
MATHS
If 1/2,1/alpha1 , 1/alpha2 , ….., 1/alph...

If `1/2,1/alpha_1 , 1/alpha_2` , ….., `1/alpha_20 , 1/6` are in A.P. and `1,beta_1,beta_2` ….., `beta_20` , 6 are in AP. Then, the number of digits in value of `alpha_18beta_3` is ____

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( \alpha_{18} \) and \( \beta_{3} \) from the given arithmetic progressions (APs) and then calculate \( \alpha_{18} \beta_{3} \). ### Step 1: Analyze the first AP The first AP is given as: \[ \frac{1}{2}, \frac{1}{\alpha_1}, \frac{1}{\alpha_2}, \ldots, \frac{1}{\alpha_{20}}, \frac{1}{6} \] This sequence has 22 terms (from \( \frac{1}{2} \) to \( \frac{1}{6} \)). Let: - First term \( a = \frac{1}{2} \) - Last term \( a_n = \frac{1}{6} \) - Number of terms \( n = 22 \) Using the formula for the \( n \)-th term of an AP: \[ a_n = a + (n-1)d \] Substituting the values: \[ \frac{1}{6} = \frac{1}{2} + (22 - 1)d \] \[ \frac{1}{6} = \frac{1}{2} + 21d \] ### Step 2: Solve for \( d \) Rearranging gives: \[ 21d = \frac{1}{6} - \frac{1}{2} \] Finding a common denominator (6): \[ \frac{1}{2} = \frac{3}{6} \implies 21d = \frac{1}{6} - \frac{3}{6} = -\frac{2}{6} = -\frac{1}{3} \] Thus, \[ d = -\frac{1}{3 \times 21} = -\frac{1}{63} \] ### Step 3: Find \( \alpha_{18} \) Using the formula for the \( k \)-th term: \[ \frac{1}{\alpha_{18}} = a + (18 - 1)d \] Substituting \( a \) and \( d \): \[ \frac{1}{\alpha_{18}} = \frac{1}{2} + 17\left(-\frac{1}{63}\right) \] Calculating: \[ \frac{1}{\alpha_{18}} = \frac{1}{2} - \frac{17}{63} \] Finding a common denominator (126): \[ \frac{1}{2} = \frac{63}{126} \quad \text{and} \quad \frac{17}{63} = \frac{34}{126} \] Thus, \[ \frac{1}{\alpha_{18}} = \frac{63}{126} - \frac{34}{126} = \frac{29}{126} \] So, \[ \alpha_{18} = \frac{126}{29} \] ### Step 4: Analyze the second AP The second AP is given as: \[ 1, \beta_1, \beta_2, \ldots, \beta_{20}, 6 \] This sequence also has 22 terms. Let: - First term \( a = 1 \) - Last term \( a_n = 6 \) Using the same formula: \[ 6 = 1 + (22 - 1)d \] Thus, \[ 6 = 1 + 21d \] Rearranging gives: \[ 21d = 6 - 1 = 5 \implies d = \frac{5}{21} \] ### Step 5: Find \( \beta_{3} \) Using the formula for the \( k \)-th term: \[ \beta_{3} = a + (3 - 1)d \] Substituting \( a \) and \( d \): \[ \beta_{3} = 1 + 2\left(\frac{5}{21}\right) = 1 + \frac{10}{21} = \frac{21}{21} + \frac{10}{21} = \frac{31}{21} \] ### Step 6: Calculate \( \alpha_{18} \beta_{3} \) Now we can find \( \alpha_{18} \beta_{3} \): \[ \alpha_{18} \beta_{3} = \left(\frac{126}{29}\right) \left(\frac{31}{21}\right) \] Calculating: \[ \alpha_{18} \beta_{3} = \frac{126 \times 31}{29 \times 21} \] Calculating the numerator: \[ 126 \times 31 = 3906 \] Calculating the denominator: \[ 29 \times 21 = 609 \] Thus, \[ \alpha_{18} \beta_{3} = \frac{3906}{609} \] Simplifying: \[ \frac{3906 \div 3}{609 \div 3} = \frac{1302}{203} \] ### Step 7: Final Calculation Calculating \( 1302 \div 203 \): \[ 1302 \approx 6.42 \quad \text{(which is approximately 6)} \] Thus, \( \alpha_{18} \beta_{3} \) is approximately 6. ### Step 8: Count the digits The number of digits in \( 6 \) is \( 1 \). ### Final Answer The number of digits in the value of \( \alpha_{18} \beta_{3} \) is **1**. ---
Promotional Banner

Topper's Solved these Questions

  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise JEE MAIN & Advance ( ARCHIVE)|46 Videos
  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise LEVEL-1|120 Videos
  • REVISION TEST-2 JEE

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos
  • STRAIGHT LINES

    VMC MODULES ENGLISH|Exercise JEE Advanced Archive (State true or false: Q. 42)|1 Videos

Similar Questions

Explore conceptually related problems

Let log_(3)N=alpha_(1)+beta_(1) log_(5)N=alpha_(2)+beta_(2) log_(7)N=alpha_(3)+beta_(3) where alpha_(1), alpha_(2) and alpha_(3) are integers and beta_(1), beta_(2), beta_(3) in [0,1) . Q. Difference of largest and smallest values of N if alpha_(1)=5, alpha_(2)=3 and alpha_(3)=2 .

Let log_3^N = alpha_1 + beta_1 , log_5^N = alpha_2 + beta_2 , log_7^N = alpha_3 + beta_3 Largest integral value of N if alpha_1 =5 , alpha_2 = 3 and alpha_3=2 and beta_1, beta_2, beta_3=(0,1) (A)342. (D) 242 (C) 243 (B) 343 342 17 Difference of largest and smallest integral values of N if alpha_1 =5 , alpha_2 = 3 and alpha_3=2 and beta_1, beta_2, beta_3=(0,1) (D) 99 (C) 98 (B) 100 (A) 97

Let alpha_1,beta_1 be the roots x^2-6x+p=0a n d alpha_2,beta_2 be the roots x^2-54 x+q=0dot If alpha_1,beta_1,alpha_2,beta_2 form an increasing G.P., then sum of the digits of the value of (q-p) is ___________.

Let alpha_1,beta_1 be the roots x^2-6x+p=0a n d alpha_2,beta_2 be the roots x^2-54 x+q=0dot If alpha_1,beta_1,alpha_2,beta_2 form an increasing G.P., then sum of the digits of the value of (q-p) is ___________.

Let alpha and beta be the roots of equation px^2 + qx + r = 0 , p != 0 .If p,q,r are in A.P. and 1/alpha+1/beta=4 , then the value of |alpha-beta| is :

Let alpha and beta be the roots of equation px^2 + qx + r = 0 , p != 0 .If p,q,r are in A.P. and 1/alpha+1/beta=4 , then the value of |alpha-beta| is :

If alpha and beta are zeroes of 8x^(2)-6x+1 , then find the value of (1)/(alpha)+(1)/(beta) .

If alpha and beta are roots of the equation 2x^(2)-3x-5=0 , then the value of (1)/(alpha)+(1)/(beta) is

If alpha and beta are zeroes of 5x^(2)-7x+1 , then find the value of (1)/(alpha)+(1)/(beta) .

If alpha and beta satisfy sinalpha cos beta=-1/2 , then the greatest value of 2cos alpha sin beta is ……….

VMC MODULES ENGLISH-SEQUENCE AND SERIES -LEVEL-2
  1. A computer solved several problems in succession. The time it took to ...

    Text Solution

    |

  2. If a(1),a(2),a(3)(a(1)gt0) are three successive terms of a GP with com...

    Text Solution

    |

  3. Let Sn=1/1^2 + 1/2^2 + 1/3^2 +….. + 1/n^2 and Tn=2 -1/n , then :

    Text Solution

    |

  4. The sum of the series 1/(1*3)+2/(1*3*5)+3/(1*3*5*7)+… is equal to :

    Text Solution

    |

  5. If in a triangleABC , cos (A-C) cos B + cos 2 B =0 , then which of t...

    Text Solution

    |

  6. Let a denotes the number of non-negative values of p for which the equ...

    Text Solution

    |

  7. The series of natural numbers is divided into groups:(1);(2,3,4);(5,6,...

    Text Solution

    |

  8. If the pth, th, rth terms of a G.P. are x, y, z respectively, prove th...

    Text Solution

    |

  9. The sum of a GP, with common ratio 3 is 364 and last term is 243, then...

    Text Solution

    |

  10. Let a1,a2 , …, a10 be in AP and h1,h2,,,, h10 be in HP. If a1=h1=...

    Text Solution

    |

  11. The harmonic mean of the roots of the equation (5+sqrt(2))x^2-(4+sqrt(...

    Text Solution

    |

  12. If a,x and b are in AP, a,y and b are in GP and a,z and b are in...

    Text Solution

    |

  13. Find the sum to n terms of the series :1/(1xx2)+1/(2xx3)+1/(3xx4)+dotd...

    Text Solution

    |

  14. If A1,A2,G1,G2 and H1,H2 are AM’s, GM’s and HM’s between two numbers, ...

    Text Solution

    |

  15. For an increasing A.P. a1, a2, an ifa1=a2+a3+a5=-12 and a1a3a5=80 , t...

    Text Solution

    |

  16. If a!= 1 and In a^2 + (In a^2)^2 + (In a^2)^3 + ... = 3 (ln a + (lna)^...

    Text Solution

    |

  17. 1/(2.4) +(1.3)/(2.4.6)+(1.3.5)/(2.4.6.8)+.............oo is equal to

    Text Solution

    |

  18. The sum sum(n=1)^oo (n/(n^4+4)) is equal to p/q then q-p is

    Text Solution

    |

  19. If sum of first n terms of an AP (having positive terms) is given by S...

    Text Solution

    |

  20. If 1/2,1/alpha1 , 1/alpha2 , ….., 1/alpha20 , 1/6 are in A.P. and 1,be...

    Text Solution

    |