Home
Class 12
MATHS
If a1,a2,a3,....an are positive real num...

If `a_1,a_2,a_3,....a_n` are positive real numbers whose product is a fixed number c, then the minimum value of `a_1+a_2+.......a_(n-1)+2a_n` is

A

`n(2c)^(1//n)`

B

`(n+1)c^(1//n)`

C

`2nc^(1//n)`

D

`(n+1)(2c)^(1//n)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of \( S = a_1 + a_2 + \ldots + a_{n-1} + 2a_n \) given that the product \( a_1 a_2 \ldots a_n = c \) (where \( c \) is a fixed positive number), we can use the Arithmetic Mean-Geometric Mean (AM-GM) inequality. ### Step-by-Step Solution: 1. **Identify the Terms**: We have \( n \) terms in total: \( a_1, a_2, \ldots, a_{n-1}, 2a_n \). 2. **Apply the AM-GM Inequality**: According to the AM-GM inequality, for any non-negative real numbers \( x_1, x_2, \ldots, x_n \), \[ \frac{x_1 + x_2 + \ldots + x_n}{n} \geq \sqrt[n]{x_1 x_2 \ldots x_n} \] Here, we can set \( x_1 = a_1, x_2 = a_2, \ldots, x_{n-1} = a_{n-1}, x_n = 2a_n \). 3. **Calculate the Arithmetic Mean**: The arithmetic mean of our terms is: \[ \frac{a_1 + a_2 + \ldots + a_{n-1} + 2a_n}{n} \] 4. **Calculate the Geometric Mean**: The geometric mean is: \[ \sqrt[n]{a_1 \cdot a_2 \cdots a_{n-1} \cdot (2a_n)} = \sqrt[n]{(a_1 a_2 \cdots a_{n-1}) \cdot 2a_n} \] 5. **Express the Product**: We know that \( a_1 a_2 \cdots a_n = c \). Therefore, we can express \( a_1 a_2 \cdots a_{n-1} \) as \( \frac{c}{a_n} \). 6. **Substituting into the Geometric Mean**: Now substituting this into the geometric mean: \[ \sqrt[n]{\frac{c}{a_n} \cdot 2a_n} = \sqrt[n]{2c} \] 7. **Combine the Inequalities**: From the AM-GM inequality, we have: \[ \frac{a_1 + a_2 + \ldots + a_{n-1} + 2a_n}{n} \geq \sqrt[n]{2c} \] Multiplying both sides by \( n \): \[ a_1 + a_2 + \ldots + a_{n-1} + 2a_n \geq n \sqrt[n]{2c} \] 8. **Conclusion**: Thus, the minimum value of \( S = a_1 + a_2 + \ldots + a_{n-1} + 2a_n \) is: \[ S_{\text{min}} = n \sqrt[n]{2c} \] ### Final Answer: The minimum value of \( a_1 + a_2 + \ldots + a_{n-1} + 2a_n \) is \( n \sqrt[n]{2c} \).
Promotional Banner

Topper's Solved these Questions

  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise LEVEL-2|34 Videos
  • REVISION TEST-2 JEE

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos
  • STRAIGHT LINES

    VMC MODULES ENGLISH|Exercise JEE Advanced Archive (State true or false: Q. 42)|1 Videos

Similar Questions

Explore conceptually related problems

If a_1,a_2,a_3,....a_n are positive real numbers whose product is a fixed number c, then the minimum value of a_1+a_2+....+a_(n-1)+3a_n is

If a_1,a_2 …. a_n are positive real numbers whose product is a fixed real number c, then the minimum value of 1+a_1 +a_2 +….. + a_(n-1) + a_n is :

If a_1,a_2, ,a_n are positive real numbers whose product is a fixed number c , then the minimum value of a_1+a_2++a_(n-1)+2a_n is a_(n-1)+2a_n is b. (n+1)c^(1//n) 2n c^(1//n) (n+1)(2c)^(1//n)

If a_1,a_2,------ ,a_n are positive real numbers whose product is a fixed number c , then the minimum value of a_1+a_2+---+a_(n-1)...........+2a_n is a. a_(n-1)+2a_n is b. (n+1)c^(1//n) c. 2n c^(1//n) d. (n+1)(2c)^(1//n)

If a_1,a_2,a_3,.....,a_(n+1) be (n+1) different prime numbers, then the number of different factors (other than1) of a_1^m.a_2.a_3...a_(n+1) , is

If a_1,a_2,a_3,.......a_n , are 'n', distinct odd natural numbers, not divisible by any prime number greater than 5, then 1/a_1+1/a_2+1/a_3+......+1/a_n is less than (a) 15/8 (b) 17/8 (c)19/8 (d) 21/8

If a_i > 0 for i=1,2,…., n and a_1 a_2 … a_(n=1) , then minimum value of (1+a_1) (1+a_2) ….. (1+a_n) is :

If a_1+a_2+a_3+......+a_n=1 AA a_i > 0, i=1,2,3,......,n , then find the maximum value of a_1 a_2 a_3 a_4 a_5......a_n .

Let a_1=0 and a_1,a_2,a_3 …. , a_n be real numbers such that |a_i|=|a_(i-1) + 1| for all I then the A.M. Of the number a_1,a_2 ,a_3 …., a_n has the value A where : (a) A lt -1/2 (b) A lt -1 (c) A ge -1/2 (d) A=-2

Let a_1,a_2,.....,a_n be fixed real numbers and define a function f(x) = (x-a_1) (x-a_2).....(x-a_n) . What is (lim)_(x->a_1)f(x) ? For some a!=a_1,a_2,.....,a_n , compute (lim)_(x->a)f(x)

VMC MODULES ENGLISH-SEQUENCE AND SERIES -JEE MAIN & Advance ( ARCHIVE)
  1. Consider an infinite geometric series with first term a and common rat...

    Text Solution

    |

  2. Sum of the first n terms of the series 1/2+3/4+7/8+(15)/(16)+............

    Text Solution

    |

  3. Let S(1),S(2),"…." be squares such that for each n ge 1, the length o...

    Text Solution

    |

  4. Let a1,a2,a3,... be in harmonic progression with a1=5a n da(20)=25. Th...

    Text Solution

    |

  5. Let the positive numbers a ,b ,ca d nd be in the A.P. Then a b c ,a b ...

    Text Solution

    |

  6. If m is the A.M of two distict real numbers l and n (l, n gt 1)and G1,...

    Text Solution

    |

  7. The sum of first 9 terms of the series (1^(3))/(1)+(1^(3)+2^(3))/(1+3)...

    Text Solution

    |

  8. If alpha in (0,pi/2),t h e nsqrt(x^2+x)+(tan^2alpha)/(sqrt(x^2+x)) is ...

    Text Solution

    |

  9. If a1,a2,a3,....an are positive real numbers whose product is a fixed ...

    Text Solution

    |

  10. If a ,b ,c ,d are positive real umbers such that a=b+c+d=2,t h e nM=(a...

    Text Solution

    |

  11. The harmonic mean of the roots of the equation (5+sqrt(2))x^2-(4+sqrt(...

    Text Solution

    |

  12. A pack contains n cards numbered from 1 to n . Two consecutive numbere...

    Text Solution

    |

  13. Let a1, a2, a3, ,a(100) be an arithmetic progression with a1=3a n dsp...

    Text Solution

    |

  14. Let (a1,a2,a3….,a11) be real numbers satsfying a1=15,27-2a2 gt 0 and ...

    Text Solution

    |

  15. about to only mathematics

    Text Solution

    |

  16. Let Sk ,k=1,2, ,100 , denotes thesum of the infinite geometric series ...

    Text Solution

    |

  17. Let x be the arithmetic mean and y ,z be tow geometric means between a...

    Text Solution

    |

  18. Let the harmonic mean and geometric mean of two positive numbers be in...

    Text Solution

    |

  19. The minimum value of the sum of real numbers a^-5, a^-4, 3a^-3, 1,a^8 ...

    Text Solution

    |

  20. Let pa n dq be the roots of the equation x^2-2x+A=0 and let ra n ds be...

    Text Solution

    |