Home
Class 12
MATHS
The minimum and maximum values of expres...

The minimum and maximum values of expression `y=costheta(sintheta+sqrt(sin^2theta+sin^2alpha))`

A

`-sqrt(1+sin^(2)alpha)` and `sqrt(1-sin^(2)alpha)`

B

`-sqrt(1+sin^(2)alpha)` and `sqrt(1+sin^(2)alpha)`

C

`1-sqrt(1+sin^(2)alpha)` and `sqrt(1+sin^(2)alpha)`

D

`-sqrt(1+sin^(2)alpha)` and `sqrt(1+sin^(2)alpha)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum and maximum values of the expression \( y = \cos \theta \left( \sin \theta + \sqrt{\sin^2 \theta + \sin^2 \alpha} \right) \), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ y = \cos \theta \left( \sin \theta + \sqrt{\sin^2 \theta + \sin^2 \alpha} \right) \] ### Step 2: Isolate \( \sec \theta \) We can rewrite \( \cos \theta \) as \( \frac{1}{\sec \theta} \): \[ y = \frac{1}{\sec \theta} \left( \sin \theta + \sqrt{\sin^2 \theta + \sin^2 \alpha} \right) \] Multiplying both sides by \( \sec \theta \): \[ y \sec \theta = \sin \theta + \sqrt{\sin^2 \theta + \sin^2 \alpha} \] ### Step 3: Rearranging the equation Rearranging gives: \[ y \sec \theta - \sin \theta = \sqrt{\sin^2 \theta + \sin^2 \alpha} \] ### Step 4: Square both sides Squaring both sides to eliminate the square root: \[ (y \sec \theta - \sin \theta)^2 = \sin^2 \theta + \sin^2 \alpha \] ### Step 5: Expand the left side Expanding the left side: \[ y^2 \sec^2 \theta - 2y \sin \theta \sec \theta + \sin^2 \theta = \sin^2 \theta + \sin^2 \alpha \] Cancelling \( \sin^2 \theta \) from both sides: \[ y^2 \sec^2 \theta - 2y \sin \theta \sec \theta = \sin^2 \alpha \] ### Step 6: Substitute \( \tan \theta \) Let \( x = \tan \theta \), then \( \sec^2 \theta = 1 + x^2 \): \[ y^2 (1 + x^2) - 2y x = \sin^2 \alpha \] This can be rearranged to form a quadratic equation in \( x \): \[ y^2 x^2 - 2y x + (y^2 - \sin^2 \alpha) = 0 \] ### Step 7: Find the discriminant For \( x \) to be real, the discriminant must be non-negative: \[ D = (-2y)^2 - 4y^2(y^2 - \sin^2 \alpha) \geq 0 \] This simplifies to: \[ 4y^2 - 4y^2(y^2 - \sin^2 \alpha) \geq 0 \] Factoring out \( 4y^2 \): \[ 4y^2(1 - y^2 + \sin^2 \alpha) \geq 0 \] ### Step 8: Solve the inequality Since \( 4y^2 \geq 0 \), we need: \[ 1 - y^2 + \sin^2 \alpha \geq 0 \] This leads to: \[ y^2 \leq 1 + \sin^2 \alpha \] ### Step 9: Determine the bounds for \( y \) Taking square roots gives: \[ |y| \leq \sqrt{1 + \sin^2 \alpha} \] Thus, the maximum and minimum values of \( y \) are: \[ -\sqrt{1 + \sin^2 \alpha} \leq y \leq \sqrt{1 + \sin^2 \alpha} \] ### Conclusion The minimum value of \( y \) is \( -\sqrt{1 + \sin^2 \alpha} \) and the maximum value is \( \sqrt{1 + \sin^2 \alpha} \). ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|15 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|20 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|11 Videos
  • THREE DIMENSIONAL GEOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|34 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (TRUE/ FALSE)|30 Videos

Similar Questions

Explore conceptually related problems

The maximum and minimum values of expression (4-2costheta) respectively are

Find the maximum and minimum values of the expression: a cos theta + b sin theta

Find the maximum and minimum values of cos^2theta-6sinthetacostheta+3sin^2theta+2.

Find the maximum and minimum values of cos^2theta-6s inthetacostheta+3sin^2theta+2.

If M and m denotes maximum and minimum value of sqrt(49cos^2theta + sin^2theta) + sqrt(49sin^2theta+cos^2theta then find the value of (M+m) is

Maximum and minimum value of 2sin^(2)theta-3sintheta+2 is-

The maximum value of the expression 1/(sin^2 theta + 3 sin theta cos theta + 5cos^2 theta) is

The maximum value of the expression 1/(sin^2 theta + 3 sin theta cos theta + 5cos^2 theta) is

Show that the expression costheta(sintheta+sqrt(sin^2theta+sin^2alpha)) always lies between the values of +-sqrt(1+sin^2alpha)

Find the maximum and minimum values of the following expressions. (i) 3costheta+5sin(theta-pi/6) (ii) 4sintheta-3costheta+7

VMC MODULES ENGLISH-TRIGONOMETRIC IDENTITIES AND EQUATIONS -LEVEL -2
  1. If sec(theta+alpha)+sec(theta-alpha)=2\ s e ctheta, prove that costhet...

    Text Solution

    |

  2. The minimum and maximum values of expression y=costheta(sintheta+sqrt(...

    Text Solution

    |

  3. If x+y+z=x y z prove that (2x)/(1-x^2)+(2y)/(1-y^2)+(2z)/(1-z^2)=(2x)/...

    Text Solution

    |

  4. If x y+y z+x z=1,then prove that x/(1-x^2)+y/(1-y^2)+z/(1-z^2)=(4x y...

    Text Solution

    |

  5. If y+cosx = sinx has a real solution , then :

    Text Solution

    |

  6. If 2 cos x lt sqrt(3) and x in [-pi, pi] , then find the solution set...

    Text Solution

    |

  7. Sum of the roots of the equation x^2+7x+10=0

    Text Solution

    |

  8. Prove that: (cos6theta+6cos4theta+15 cos2theta+10)/(cos5theta+5cos3the...

    Text Solution

    |

  9. Find the number of solution of the equation e^(sinx)-e^(-sinx)-4=0

    Text Solution

    |

  10. The value of x , 0 le x le (pi)/2 which satisfy the equation 81^( si...

    Text Solution

    |

  11. The number of real solution of the equation. sin(e^(x))=5^(x)+5^(-x) ...

    Text Solution

    |

  12. Let 2 sin^(2)x + 3 sin x -2 gt 0 and x^(2)-x -2 lt 0 ( x is measured ...

    Text Solution

    |

  13. The number of points of intersection of two curves y=2sinxa n dy=5x^2+...

    Text Solution

    |

  14. The number of all the possible triplets (a1,a2,a3) such that a1+a2cos(...

    Text Solution

    |

  15. The equation "sin"^(4) x - (k +2)"sin"^(2) x - (k + 3) = 0 possesses a...

    Text Solution

    |

  16. The solution of equation sin^(50)x-cos^(50)x=1 can be (n in I)

    Text Solution

    |

  17. (sin^3theta-cos^3theta)/(sintheta-costheta)-(costheta)/(sqrt(1+cot^2th...

    Text Solution

    |

  18. In interval [-(pi)/(2),(pi)/(2)], the equation log(sin theta )( cos^(...

    Text Solution

    |

  19. Prove tanx+ tany+ tanz=tan xtany tanz if x+y+z = pi

    Text Solution

    |

  20. If F(x) = sinx+cosx, then the most general solution of F(x) = [F((pi)/...

    Text Solution

    |