Home
Class 12
MATHS
The equation "sin"^(4) x - (k +2)"sin"^(...

The equation `"sin"^(4) x - (k +2)"sin"^(2) x - (k + 3) = 0` possesses a solution, if

A

`k gt -3`

B

`k lt -2`

C

`-3 lek le-2`

D

k is any(+ve) value

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin^4 x - (k + 2) \sin^2 x - (k + 3) = 0 \) and find the conditions under which it possesses a solution, we can follow these steps: ### Step 1: Substitute \( y = \sin^2 x \) Let \( y = \sin^2 x \). Then, the equation becomes: \[ y^2 - (k + 2)y - (k + 3) = 0 \] ### Step 2: Identify the coefficients In the quadratic equation \( ay^2 + by + c = 0 \), we have: - \( a = 1 \) - \( b = -(k + 2) \) - \( c = -(k + 3) \) ### Step 3: Apply the quadratic formula The quadratic formula is given by: \[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Substituting the values of \( a \), \( b \), and \( c \): \[ y = \frac{k + 2 \pm \sqrt{(k + 2)^2 - 4 \cdot 1 \cdot -(k + 3)}}{2 \cdot 1} \] ### Step 4: Simplify the discriminant Calculate the discriminant: \[ (k + 2)^2 + 4(k + 3) = k^2 + 4k + 4 + 4k + 12 = k^2 + 8k + 16 \] This can be rewritten as: \[ (k + 4)^2 \] ### Step 5: Substitute back into the formula Now substituting back into the quadratic formula: \[ y = \frac{k + 2 \pm (k + 4)}{2} \] ### Step 6: Calculate the two possible values of \( y \) 1. For the positive case: \[ y_1 = \frac{(k + 2) + (k + 4)}{2} = \frac{2k + 6}{2} = k + 3 \] 2. For the negative case: \[ y_2 = \frac{(k + 2) - (k + 4)}{2} = \frac{-2}{2} = -1 \] ### Step 7: Analyze the values of \( y \) Since \( y = \sin^2 x \), it must be in the range \( [0, 1] \). Therefore, we analyze the two values obtained: - \( y_1 = k + 3 \) - \( y_2 = -1 \) (not valid since \( \sin^2 x \) cannot be negative) Thus, we need \( k + 3 \) to be within the range \( [0, 1] \): \[ 0 \leq k + 3 \leq 1 \] ### Step 8: Solve the inequalities 1. From \( k + 3 \geq 0 \): \[ k \geq -3 \] 2. From \( k + 3 \leq 1 \): \[ k \leq -2 \] ### Final Result Combining both inequalities, we find: \[ -3 \leq k \leq -2 \] Thus, the equation possesses a solution if \( k \) is in the interval \( [-3, -2] \).
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|15 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|20 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|11 Videos
  • THREE DIMENSIONAL GEOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|34 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (TRUE/ FALSE)|30 Videos

Similar Questions

Explore conceptually related problems

Determine all value of 'a' for which the equation cos^(4) x-(a+2) cos^(2)x-(a+3)=0 , possess solution.

The equation 2sin^(2)x=8-k(2-sinx) possesses a solution if

The equation sin^(4) x + cos^(4) x + sin 2x + k = 0 must have real solutions if :

The equation |"sin" x| = "sin" x + 3"has in" [0, 2pi]

The range of value's of k for which the equation 2 cos^(4) x - sin^(4) x + k = 0 has atleast one solution is [ lambda, mu] . Find the value of ( 9 mu + lambda) .

The number of solution of the equation 2 "sin"^(3) x + 2 "cos"^(3) x - 3 "sin" 2x + 2 = 0 "in" [0, 4pi] , is

If the equation sin ^(2) x - k sin x - 3 = 0 has exactly two distinct real roots in [0, pi] , then find the values of k .

If the the equation a sin x + cos 2x=2a-7 possesses a solution, then find the values of a.

The values of k for which the equation sin^4 x+cos^4 x+sin2x+k=0 possess solution

If the equation sin^4x-(k+2)sin^2x=(k+3) has a solution then ' k ' must lie in the interval: a. (-4,-2) b. [-3,2) c. (-4,-3) d. [-3,-2]

VMC MODULES ENGLISH-TRIGONOMETRIC IDENTITIES AND EQUATIONS -LEVEL -2
  1. The number of points of intersection of two curves y=2sinxa n dy=5x^2+...

    Text Solution

    |

  2. The number of all the possible triplets (a1,a2,a3) such that a1+a2cos(...

    Text Solution

    |

  3. The equation "sin"^(4) x - (k +2)"sin"^(2) x - (k + 3) = 0 possesses a...

    Text Solution

    |

  4. The solution of equation sin^(50)x-cos^(50)x=1 can be (n in I)

    Text Solution

    |

  5. (sin^3theta-cos^3theta)/(sintheta-costheta)-(costheta)/(sqrt(1+cot^2th...

    Text Solution

    |

  6. In interval [-(pi)/(2),(pi)/(2)], the equation log(sin theta )( cos^(...

    Text Solution

    |

  7. Prove tanx+ tany+ tanz=tan xtany tanz if x+y+z = pi

    Text Solution

    |

  8. If F(x) = sinx+cosx, then the most general solution of F(x) = [F((pi)/...

    Text Solution

    |

  9. If max {5 sin theta + 3 sin ( theta - alpha )}=7 , then the set of pos...

    Text Solution

    |

  10. Find the number of integral value of n so that sinx(sinx+cosx)=n has a...

    Text Solution

    |

  11. The value sum(r=0)^(7)tan^(2)""(pix)/(16) is equal to :

    Text Solution

    |

  12. One of the equation cosx-x+1/2=0 lies in the interval (0,pi/2) (b) (-...

    Text Solution

    |

  13. If ("tan"(theta+alpha))/a=""("tan"(theta+beta))/b=""("tan"(theta+gamma...

    Text Solution

    |

  14. If t a nalpha=1/(sqrt(x(x^2+x+1))),tanbeta=(sqrt(x))/(sqrt(x^2+x+1))a ...

    Text Solution

    |

  15. If n=pi/(4alpha), then tan alpha tan 2alpha tan 3 alpha ... tan(2n-1)a...

    Text Solution

    |

  16. If cos(alpha+beta)sin(gamma+delta)="cos"(alpha-beta)"sin"(gamma-delta)...

    Text Solution

    |

  17. Let A and B denote the statements A : cos alpha + cos beta + cos gam...

    Text Solution

    |

  18. If alpha, beta, gamma, delta satisfy the equation tan(x+(pi)/(4))=3 ta...

    Text Solution

    |

  19. in any triangle ABC, which is not right angled Sigma cosA.cosecB.cosec...

    Text Solution

    |

  20. If P(n) = cos^(n)theta +sin^(n)theta, then P(2) - P(1) is equal to :

    Text Solution

    |