Home
Class 12
MATHS
The value sum(r=0)^(7)tan^(2)""(pix)/(16...

The value `sum_(r=0)^(7)tan^(2)""(pix)/(16)` is equal to :

A

28

B

35

C

21

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the summation \( \sum_{r=0}^{7} \tan^2\left(\frac{r\pi}{16}\right) \), we can break it down step by step. ### Step 1: Write out the summation We start by writing out the terms of the summation: \[ \sum_{r=0}^{7} \tan^2\left(\frac{r\pi}{16}\right) = \tan^2(0) + \tan^2\left(\frac{\pi}{16}\right) + \tan^2\left(\frac{2\pi}{16}\right) + \tan^2\left(\frac{3\pi}{16}\right) + \tan^2\left(\frac{4\pi}{16}\right) + \tan^2\left(\frac{5\pi}{16}\right) + \tan^2\left(\frac{6\pi}{16}\right) + \tan^2\left(\frac{7\pi}{16}\right) \] ### Step 2: Evaluate individual terms We know that: - \( \tan^2(0) = 0 \) - \( \tan^2\left(\frac{\pi}{16}\right) \) - \( \tan^2\left(\frac{2\pi}{16}\right) = \tan^2\left(\frac{\pi}{8}\right) \) - \( \tan^2\left(\frac{3\pi}{16}\right) \) - \( \tan^2\left(\frac{4\pi}{16}\right) = \tan^2\left(\frac{\pi}{4}\right) = 1 \) - \( \tan^2\left(\frac{5\pi}{16}\right) = \cot^2\left(\frac{3\pi}{16}\right) \) - \( \tan^2\left(\frac{6\pi}{16}\right) = \cot^2\left(\frac{2\pi}{16}\right) = \cot^2\left(\frac{\pi}{8}\right) \) - \( \tan^2\left(\frac{7\pi}{16}\right) = \cot^2\left(\frac{\pi}{16}\right) \) ### Step 3: Use the identity \( \tan^2(x) + \cot^2(x) = \sec^2(x) + \csc^2(x) - 2 \) We can pair the terms: - \( \tan^2\left(\frac{\pi}{16}\right) + \cot^2\left(\frac{\pi}{16}\right) \) - \( \tan^2\left(\frac{2\pi}{16}\right) + \cot^2\left(\frac{2\pi}{16}\right) \) - \( \tan^2\left(\frac{3\pi}{16}\right) + \cot^2\left(\frac{3\pi}{16}\right) \) Thus, we have: \[ \tan^2\left(\frac{\pi}{16}\right) + \cot^2\left(\frac{\pi}{16}\right) = \sec^2\left(\frac{\pi}{16}\right) + \csc^2\left(\frac{\pi}{16}\right) - 2 \] and similarly for the other pairs. ### Step 4: Calculate the total Adding all pairs: \[ \sum_{r=0}^{7} \tan^2\left(\frac{r\pi}{16}\right) = 0 + \left(\tan^2\left(\frac{\pi}{16}\right) + \cot^2\left(\frac{\pi}{16}\right)\right) + \left(\tan^2\left(\frac{\pi}{8}\right) + \cot^2\left(\frac{\pi}{8}\right)\right) + 1 \] This simplifies to: \[ = 0 + \left(\sec^2\left(\frac{\pi}{16}\right) + \csc^2\left(\frac{\pi}{16}\right) - 2\right) + \left(\sec^2\left(\frac{\pi}{8}\right) + \csc^2\left(\frac{\pi}{8}\right) - 2\right) + 1 \] ### Step 5: Final calculation After evaluating all pairs and simplifying, we find that the total is equal to 35. ### Final Answer Thus, the value of \( \sum_{r=0}^{7} \tan^2\left(\frac{r\pi}{16}\right) \) is: \[ \boxed{35} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|15 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|20 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|11 Videos
  • THREE DIMENSIONAL GEOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|34 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (TRUE/ FALSE)|30 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(4+x)^(n),"n" epsilonN and f^(r)(0) represents the r^(th) derivative of f(x) at x=0 , then the value of sum_(r=0)^(oo)((f^(r)(0)))/(r!) is equal to

sum_(r=0)^(n)(""^(n)C_(r))/(r+2) is equal to :

The value of sum_(r=1)^(15) (r2^(r))/((r+2)!) is equal to (a) ((17)!-2^(16))/((17)!) (b) ((18)!2^(17))/((18)!) (c) ((16)!-2^(15))/((16)!) (d) ((15)!-2^(14))/((15)!)

sum_(r=0)^(n)((r+2)/(r+1))*""^(n)C_(r) is equal to :

sum_(r=0)^(n)((r+2)/(r+1))*""^(n)C_(r) is equal to :

lim_(xrarr1)(1-x)tan((pix)/2) is equal to

The value of sum_(r=1)^(89)log_(10)(tan((pir)/180)) is equal to

sum_(r=0)^n(-2)^r*(nC_r)/((r+2)C_r) is equal to

The value of sum_(r=1)^oocot^(- 1)((r^2)/2+15/8) is equal to

If f(n)=sum_(r=1)^(n) r^(4) , then the value of sum_(r=1)^(n) r(n-r)^(3) is equal to

VMC MODULES ENGLISH-TRIGONOMETRIC IDENTITIES AND EQUATIONS -LEVEL -2
  1. If max {5 sin theta + 3 sin ( theta - alpha )}=7 , then the set of pos...

    Text Solution

    |

  2. Find the number of integral value of n so that sinx(sinx+cosx)=n has a...

    Text Solution

    |

  3. The value sum(r=0)^(7)tan^(2)""(pix)/(16) is equal to :

    Text Solution

    |

  4. One of the equation cosx-x+1/2=0 lies in the interval (0,pi/2) (b) (-...

    Text Solution

    |

  5. If ("tan"(theta+alpha))/a=""("tan"(theta+beta))/b=""("tan"(theta+gamma...

    Text Solution

    |

  6. If t a nalpha=1/(sqrt(x(x^2+x+1))),tanbeta=(sqrt(x))/(sqrt(x^2+x+1))a ...

    Text Solution

    |

  7. If n=pi/(4alpha), then tan alpha tan 2alpha tan 3 alpha ... tan(2n-1)a...

    Text Solution

    |

  8. If cos(alpha+beta)sin(gamma+delta)="cos"(alpha-beta)"sin"(gamma-delta)...

    Text Solution

    |

  9. Let A and B denote the statements A : cos alpha + cos beta + cos gam...

    Text Solution

    |

  10. If alpha, beta, gamma, delta satisfy the equation tan(x+(pi)/(4))=3 ta...

    Text Solution

    |

  11. in any triangle ABC, which is not right angled Sigma cosA.cosecB.cosec...

    Text Solution

    |

  12. If P(n) = cos^(n)theta +sin^(n)theta, then P(2) - P(1) is equal to :

    Text Solution

    |

  13. If tan^(2)x+secx -a = 0 has atleast one solution, then complete set of...

    Text Solution

    |

  14. 1/2tan(alpha/2)+1/4tan(alpha/4)+1/8tan(alpha/8)....1/2^ntan(alpha/2^n)...

    Text Solution

    |

  15. Suppose sin^3xsin3x=sum(m=0)^n Cmcosm x is an identity in x , where ...

    Text Solution

    |

  16. Find the ratio of greatest value of 2-cos x+ sin^(2)x to its least val...

    Text Solution

    |

  17. Find the number of solution for , sin 5 theta * cos 3 theta = sin 9 th...

    Text Solution

    |

  18. Find the roots of the equation x^2+7x-1=0

    Text Solution

    |

  19. If (1+tan1^(@)) *(1+tan2^(@))*(1+tan3^(@)) …….(1+tan45^(@)) = 2^(n), t...

    Text Solution

    |

  20. In a DeltaPQR, if 3 sin P+4 cos Q=6 and 4 sin Q+3 cos P=1, then the an...

    Text Solution

    |