Home
Class 12
MATHS
If U(n) = sin n theta*sec^(n)theta, V(n)...

If `U_(n) = sin n theta*sec^(n)theta, V_(n) = cosntheta*sec^(n)theta `for n= 0,1,2,… then `V_(n) -V_(n-1)+U_(n-1)tantheta` =

A

0

B

1

C

`sintheta`

D

`costheta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \( V_n - V_{n-1} + U_{n-1} \tan \theta \) using the definitions of \( U_n \) and \( V_n \). Given: - \( U_n = \sin(n\theta) \sec^n(\theta) \) - \( V_n = \cos(n\theta) \sec^n(\theta) \) ### Step 1: Write the expression We start with the expression: \[ V_n - V_{n-1} + U_{n-1} \tan \theta \] ### Step 2: Substitute \( V_n \) and \( V_{n-1} \) Substituting the definitions: \[ V_n = \cos(n\theta) \sec^n(\theta) \] \[ V_{n-1} = \cos((n-1)\theta) \sec^{n-1}(\theta) \] Thus, we have: \[ V_n - V_{n-1} = \cos(n\theta) \sec^n(\theta) - \cos((n-1)\theta) \sec^{n-1}(\theta) \] ### Step 3: Substitute \( U_{n-1} \) Next, we substitute \( U_{n-1} \): \[ U_{n-1} = \sin((n-1)\theta) \sec^{n-1}(\theta) \] And since \( \tan \theta = \frac{\sin \theta}{\cos \theta} \), we have: \[ U_{n-1} \tan \theta = \sin((n-1)\theta) \sec^{n-1}(\theta) \cdot \frac{\sin \theta}{\cos \theta} \] ### Step 4: Combine the terms Now, we can combine all the terms: \[ V_n - V_{n-1} + U_{n-1} \tan \theta = \left( \cos(n\theta) \sec^n(\theta) - \cos((n-1)\theta) \sec^{n-1}(\theta) \right) + \left( \sin((n-1)\theta) \sec^{n-1}(\theta) \cdot \frac{\sin \theta}{\cos \theta} \right) \] ### Step 5: Factor out \( \sec^{n-1}(\theta) \) We can factor out \( \sec^{n-1}(\theta) \): \[ = \sec^{n-1}(\theta) \left( \cos(n\theta) \sec(\theta) - \cos((n-1)\theta) + \sin((n-1)\theta) \frac{\sin \theta}{\cos \theta} \right) \] ### Step 6: Simplify the expression Now, we can simplify the expression inside the parentheses: \[ = \sec^{n-1}(\theta) \left( \cos(n\theta) \sec(\theta) - \cos((n-1)\theta) + \frac{\sin((n-1)\theta) \sin(\theta)}{\cos(\theta)} \right) \] ### Step 7: Use trigonometric identities Using the identity \( \cos(a + b) = \cos a \cos b - \sin a \sin b \): \[ \cos(n\theta) \sec(\theta) - \left( \cos((n-1)\theta) \cos(\theta) - \sin((n-1)\theta) \sin(\theta) \right) \] ### Step 8: Final simplification After applying the identity and simplifying, we find that: \[ = 0 \] Thus, the final result is: \[ V_n - V_{n-1} + U_{n-1} \tan \theta = 0 \] ### Conclusion The answer is \( 0 \).
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|15 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|20 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|11 Videos
  • THREE DIMENSIONAL GEOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|34 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (TRUE/ FALSE)|30 Videos

Similar Questions

Explore conceptually related problems

If u_n= sin (ntheta) sec^ntheta , v_n= cos(ntheta)sec^ntheta , n in N , n!=1 , then (v_n-v_(n-1))/v_(n-1)+1/n(u_n/v_n) =

If P_(n) = cos^(n)theta +sin^(n)theta , then P_(2) - P_(1) is equal to :

If T_(n)=cos^(n)theta+sin ^(n)theta, then 2T_(6)-3T_(4)+1=

sin^2 n theta- sin^2 (n-1)theta= sin^2 theta where n is constant and n != 0,1

If alpha,beta be the roots of the equation u^2-2u+2=0 and if cottheta=x+1, then ((x+alpha)^n-(x+beta)^n)/(alpha-beta) is equal to (a) ((sin n theta),(sin^n theta)) (b) ((cosn theta),(cos^n theta)) (c) ((sinn theta),cos^n theta)) (d) ((cosn theta),(sintheta^n theta))

If |2 sin theta-cosec theta| ge 1 and theta ne (n pi)/2, n in Z , then

If P_n = cos^n theta+ sin^n theta then 2P_6-3P_4 + 1 =

If (2^n+1)theta=pi then 2^n costheta cos2theta cos2^2 theta .......cos 2^(n-1) theta=

If theta = (pi)/(2 ^(n) +1) prove that 2 ^(n) cos theta cos 2 theta cos 2 ^(2) theta…. Cos 2 ^(n -1) theta =1

costheta+cos2theta+cos3theta+.......+cos(n-1)theta+cosntheta=

VMC MODULES ENGLISH-TRIGONOMETRIC IDENTITIES AND EQUATIONS -LEVEL -2
  1. If alpha, beta, gamma, delta satisfy the equation tan(x+(pi)/(4))=3 ta...

    Text Solution

    |

  2. in any triangle ABC, which is not right angled Sigma cosA.cosecB.cosec...

    Text Solution

    |

  3. If P(n) = cos^(n)theta +sin^(n)theta, then P(2) - P(1) is equal to :

    Text Solution

    |

  4. If tan^(2)x+secx -a = 0 has atleast one solution, then complete set of...

    Text Solution

    |

  5. 1/2tan(alpha/2)+1/4tan(alpha/4)+1/8tan(alpha/8)....1/2^ntan(alpha/2^n)...

    Text Solution

    |

  6. Suppose sin^3xsin3x=sum(m=0)^n Cmcosm x is an identity in x , where ...

    Text Solution

    |

  7. Find the ratio of greatest value of 2-cos x+ sin^(2)x to its least val...

    Text Solution

    |

  8. Find the number of solution for , sin 5 theta * cos 3 theta = sin 9 th...

    Text Solution

    |

  9. Find the roots of the equation x^2+7x-1=0

    Text Solution

    |

  10. If (1+tan1^(@)) *(1+tan2^(@))*(1+tan3^(@)) …….(1+tan45^(@)) = 2^(n), t...

    Text Solution

    |

  11. In a DeltaPQR, if 3 sin P+4 cos Q=6 and 4 sin Q+3 cos P=1, then the an...

    Text Solution

    |

  12. If U(n) = sin n theta*sec^(n)theta, V(n) = cosntheta*sec^(n)theta for ...

    Text Solution

    |

  13. If sinx+cosx+tanx+cotx+secx+cosecx = 7 and sin2x = a-bsqrt2, then orde...

    Text Solution

    |

  14. If sin^2A=x , then sinAsin2Asin3Asin4A is a polynomial in x , the sum ...

    Text Solution

    |

  15. 1/(cosalpha+cos3alpha)+1/(cosalpha+cos5alpha)....1/(cosalpha+cos(2n+1)...

    Text Solution

    |

  16. Range of f(x)=log(sqrt(5))(sqrt(2))(sinx-cosx)+3) is

    Text Solution

    |

  17. The equation 3^("sin"2x + 2"cos"^(2)x) + 3^(1-"sin"2x +2"sin"^(2)x) = ...

    Text Solution

    |

  18. Solve the equation 4^(sin 2x+2 cos^2 x)+4^(1-sin 2 x+2 sin^2 x)=65

    Text Solution

    |

  19. If sec theta= x+1/(4x) then sec theta+ tan theta= (a) x, 1/(x), (b) 2x...

    Text Solution

    |

  20. If sin[(pi)/(4)cottheta] = cos[(pi)/(4)tantheta] then theta can be :

    Text Solution

    |