Home
Class 12
MATHS
If sin^2A=x , then sinAsin2Asin3Asin4A i...

If `sin^2A=x` , then `sinAsin2Asin3Asin4A` is a polynomial in x , the sum of whose cofficients is :

A

0

B

40

C

168

D

336

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to express \( \sin A \sin 2A \sin 3A \sin 4A \) in terms of \( x \), where \( \sin^2 A = x \). We will follow these steps: ### Step 1: Express \( \sin A \) and \( \cos A \) in terms of \( x \) Given that \( \sin^2 A = x \), we can write: \[ \sin A = \sqrt{x} \quad \text{or} \quad \sin A = -\sqrt{x} \] Also, using the Pythagorean identity, we have: \[ \cos^2 A = 1 - \sin^2 A = 1 - x \quad \Rightarrow \quad \cos A = \sqrt{1 - x} \quad \text{or} \quad \cos A = -\sqrt{1 - x} \] ### Step 2: Write \( \sin 2A \), \( \sin 3A \), and \( \sin 4A \) in terms of \( \sin A \) and \( \cos A \) Using the double angle and triple angle formulas: \[ \sin 2A = 2 \sin A \cos A \] \[ \sin 3A = 3 \sin A - 4 \sin^3 A = 3 \sin A - 4 (\sin^2 A) \sin A = 3 \sin A - 4x \sin A = \sin A (3 - 4x) \] \[ \sin 4A = 2 \sin 2A \cos 2A = 2 (2 \sin A \cos A) (1 - 2 \sin^2 A) = 4 \sin A \cos A (1 - 2x) \] ### Step 3: Substitute these expressions into \( \sin A \sin 2A \sin 3A \sin 4A \) Now we can write: \[ \sin A \sin 2A \sin 3A \sin 4A = \sin A (2 \sin A \cos A) (\sin A (3 - 4x)) (4 \sin A \cos A (1 - 2x)) \] This simplifies to: \[ = 8 \sin^4 A \cos^2 A (3 - 4x)(1 - 2x) \] ### Step 4: Substitute \( \sin^2 A \) and \( \cos^2 A \) Substituting \( \sin^2 A = x \) and \( \cos^2 A = 1 - x \): \[ = 8 x^2 (1 - x) (3 - 4x)(1 - 2x) \] ### Step 5: Expand the polynomial Now we will expand \( 8 x^2 (1 - x) (3 - 4x)(1 - 2x) \): 1. First, expand \( (3 - 4x)(1 - 2x) \): \[ = 3 - 6x - 4x + 8x^2 = 3 - 10x + 8x^2 \] 2. Now multiply by \( (1 - x) \): \[ (1 - x)(3 - 10x + 8x^2) = 3 - 10x + 8x^2 - 3x + 10x^2 - 8x^3 = 3 - 13x + 18x^2 - 8x^3 \] 3. Finally, multiply by \( 8x^2 \): \[ 8x^2(3 - 13x + 18x^2 - 8x^3) = 24x^2 - 104x^3 + 144x^4 - 64x^5 \] ### Step 6: Find the sum of coefficients The polynomial is: \[ -64x^5 + 144x^4 - 104x^3 + 24x^2 \] To find the sum of the coefficients, substitute \( x = 1 \): \[ -64(1)^5 + 144(1)^4 - 104(1)^3 + 24(1)^2 = -64 + 144 - 104 + 24 \] Calculating this gives: \[ = 144 + 24 - 64 - 104 = 0 \] ### Final Answer The sum of the coefficients is \( 0 \).
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|15 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|20 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|11 Videos
  • THREE DIMENSIONAL GEOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|34 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (TRUE/ FALSE)|30 Videos

Similar Questions

Explore conceptually related problems

Find a quadratic polynomial, the sum of whose zeroes is (5)/(3) and product is 2.

Find a quadratic polynomial, the sum of whose zeroes is -(3)/(4) and product is 5.

sin5A=5cos^4AsinA-10cos^2Asin^3A+sin^5A

If asin^2(x+y)=b , then find the value of dy/dx

Find a quadratic polynomial, the sum and product of whose zeroes are -3 and 2, respectively.

If the sum of zeroes of the polynomial 3x^(2)-2kx+5 is 4, then find the value of k.

Prove that: sin^2(n+1)A-sin^2n A="sin"(2n+1)Asin A

If the sum of the zeros of the polynomial f(x)=2x^3-3k x^2+4x-5 is 6 , then the value of k is (a) 2 (b) 4 (c) -2 (d) -4

Find a quadratic polynomial, the sum and product of whose zeroes are -3 and 2 , respectively.

If A=30^(@) , show that : sin3A=4sinAsin(60^(@)-A)sin(60^(@)+A)

VMC MODULES ENGLISH-TRIGONOMETRIC IDENTITIES AND EQUATIONS -LEVEL -2
  1. If alpha, beta, gamma, delta satisfy the equation tan(x+(pi)/(4))=3 ta...

    Text Solution

    |

  2. in any triangle ABC, which is not right angled Sigma cosA.cosecB.cosec...

    Text Solution

    |

  3. If P(n) = cos^(n)theta +sin^(n)theta, then P(2) - P(1) is equal to :

    Text Solution

    |

  4. If tan^(2)x+secx -a = 0 has atleast one solution, then complete set of...

    Text Solution

    |

  5. 1/2tan(alpha/2)+1/4tan(alpha/4)+1/8tan(alpha/8)....1/2^ntan(alpha/2^n)...

    Text Solution

    |

  6. Suppose sin^3xsin3x=sum(m=0)^n Cmcosm x is an identity in x , where ...

    Text Solution

    |

  7. Find the ratio of greatest value of 2-cos x+ sin^(2)x to its least val...

    Text Solution

    |

  8. Find the number of solution for , sin 5 theta * cos 3 theta = sin 9 th...

    Text Solution

    |

  9. Find the roots of the equation x^2+7x-1=0

    Text Solution

    |

  10. If (1+tan1^(@)) *(1+tan2^(@))*(1+tan3^(@)) …….(1+tan45^(@)) = 2^(n), t...

    Text Solution

    |

  11. In a DeltaPQR, if 3 sin P+4 cos Q=6 and 4 sin Q+3 cos P=1, then the an...

    Text Solution

    |

  12. If U(n) = sin n theta*sec^(n)theta, V(n) = cosntheta*sec^(n)theta for ...

    Text Solution

    |

  13. If sinx+cosx+tanx+cotx+secx+cosecx = 7 and sin2x = a-bsqrt2, then orde...

    Text Solution

    |

  14. If sin^2A=x , then sinAsin2Asin3Asin4A is a polynomial in x , the sum ...

    Text Solution

    |

  15. 1/(cosalpha+cos3alpha)+1/(cosalpha+cos5alpha)....1/(cosalpha+cos(2n+1)...

    Text Solution

    |

  16. Range of f(x)=log(sqrt(5))(sqrt(2))(sinx-cosx)+3) is

    Text Solution

    |

  17. The equation 3^("sin"2x + 2"cos"^(2)x) + 3^(1-"sin"2x +2"sin"^(2)x) = ...

    Text Solution

    |

  18. Solve the equation 4^(sin 2x+2 cos^2 x)+4^(1-sin 2 x+2 sin^2 x)=65

    Text Solution

    |

  19. If sec theta= x+1/(4x) then sec theta+ tan theta= (a) x, 1/(x), (b) 2x...

    Text Solution

    |

  20. If sin[(pi)/(4)cottheta] = cos[(pi)/(4)tantheta] then theta can be :

    Text Solution

    |