Home
Class 12
MATHS
1/(cosalpha+cos3alpha)+1/(cosalpha+cos5a...

`1/(cosalpha+cos3alpha)+1/(cosalpha+cos5alpha)....1/(cosalpha+cos(2n+1)alpha`

A

`cosec alpha [tan(n+1)alpha-tan alpha]`

B

`sec alpha [ tan(n+1)alpha - tan alpha]`

C

`1/2 sec alpha[ tan (n+1)alpha - tan alpha]`

D

`1/2 cosec alpha[ tan (n+1) alpha - tan alpha]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the series \[ S = \frac{1}{\cos \alpha + \cos 3\alpha} + \frac{1}{\cos \alpha + \cos 5\alpha} + \ldots + \frac{1}{\cos \alpha + \cos (2n + 1)\alpha} \] we will use the trigonometric identity for the sum of cosines: \[ \cos a + \cos b = 2 \cos \left(\frac{a+b}{2}\right) \cos \left(\frac{a-b}{2}\right) \] ### Step 1: Rewrite the first term For the first term, we have: \[ \cos \alpha + \cos 3\alpha = 2 \cos \left(\frac{\alpha + 3\alpha}{2}\right) \cos \left(\frac{\alpha - 3\alpha}{2}\right) = 2 \cos(2\alpha) \cos(-\alpha) = 2 \cos(2\alpha) \cos(\alpha) \] Thus, \[ \frac{1}{\cos \alpha + \cos 3\alpha} = \frac{1}{2 \cos(2\alpha) \cos(\alpha)} \] ### Step 2: Rewrite the second term For the second term, we have: \[ \cos \alpha + \cos 5\alpha = 2 \cos \left(\frac{\alpha + 5\alpha}{2}\right) \cos \left(\frac{\alpha - 5\alpha}{2}\right) = 2 \cos(3\alpha) \cos(-2\alpha) = 2 \cos(3\alpha) \cos(2\alpha) \] Thus, \[ \frac{1}{\cos \alpha + \cos 5\alpha} = \frac{1}{2 \cos(3\alpha) \cos(2\alpha)} \] ### Step 3: Generalize the term Continuing this process, for the \(k\)-th term where \(k\) is odd, we can express: \[ \cos \alpha + \cos (2k + 1)\alpha = 2 \cos \left(k\alpha + \alpha\right) \cos \left(k\alpha - \alpha\right) = 2 \cos((k+1)\alpha) \cos(k\alpha) \] Thus, we can write: \[ \frac{1}{\cos \alpha + \cos (2k + 1)\alpha} = \frac{1}{2 \cos((k+1)\alpha) \cos(k\alpha)} \] ### Step 4: Write the series The series can now be expressed as: \[ S = \sum_{k=1}^{n} \frac{1}{2 \cos((k+1)\alpha) \cos(k\alpha)} \] ### Step 5: Factor out constants Factoring out the constant \( \frac{1}{2} \): \[ S = \frac{1}{2} \sum_{k=1}^{n} \frac{1}{\cos((k+1)\alpha) \cos(k\alpha)} \] ### Step 6: Simplify the sum Using the identity for tangent, we can express the sum in terms of tangent: \[ \frac{1}{\cos((k+1)\alpha) \cos(k\alpha)} = \sec((k+1)\alpha) \sec(k\alpha) \] This leads us to a telescoping series: \[ S = \frac{1}{2} \left( \tan((n+1)\alpha) - \tan(\alpha) \right) \] ### Final Result Thus, the final result for the series is: \[ S = \frac{1}{2} \left( \tan((n+1)\alpha) - \tan(\alpha) \right) \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|15 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|20 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|11 Videos
  • THREE DIMENSIONAL GEOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|34 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (TRUE/ FALSE)|30 Videos

Similar Questions

Explore conceptually related problems

Let f_n(a)=(sinalpha+sin3alpha+sin5alpha+...+sin(2n-1)alpha)/(cosalpha+cos3alpha+cos5alpha+...+cos(2n-1)alpha) Then, the value of f_4(pi/32) is equal to

One side of a square makes an angle alpha with x axis and one vertex of the square is at origin. Prove that the equations of its diagonals are x(sin alpha+ cos alpha) =y (cosalpha-sinalpha) or x(cos alpha-sin alpha) + y (sin alpha + cos alpha) = a , where a is the length of the side of the square.

prove that cosalpha\ cos2alpha\ cos4alpha......cos(2^(n-1)alpha)=(sin2^nalpha)/(2^n sinalpha)\ for\ a l l\ n in N

If intsinx/(sin(x-alpha))dx=Ax+Blogsin(x-alpha)+C , then value of (A,B) is (A) (-sinalpha,cosalpha) (B) (-cosalpha,sinalpha) (C) (sinalpha,cosalpha) (D) (cosalpha,sinalpha)

If alpha = pi/3 , prove that cos alpha*cos 2alpha*cos 3alpha*cos 4alpha*cos 5alpha*cos 6alpha = -1/16 .

If alpha = pi/3 , prove that cos alpha*cos 2alpha*cos 3alpha*cos 4alpha*cos 5alpha*cos 6alpha = -1/16 .

Prove that (sinalpha)/(1+cosalpha)+(1+cosalpha)/(sin alpha)=2"cosec "alpha .

cos alpha cos 2 alpha cos 4 alpha cos 8 alpha = (1)/(16), if alpha = 24 ^(@)

f(alpha,beta) = cos^2(alpha)+ cos^2(alpha+beta)- 2 cosalpha cosbeta cos(alpha+beta) is

Let t_(1)=(sin alpha)^(cos alpha), t_(2)=(sin alpha)^(sin alpha), t_(3)=(cosalpha)^(cos alpha), t_(4)=(cosalpha)^(sin alpha) , where alpha in (0, (pi)/(4)) , then which of the following is correct

VMC MODULES ENGLISH-TRIGONOMETRIC IDENTITIES AND EQUATIONS -LEVEL -2
  1. If alpha, beta, gamma, delta satisfy the equation tan(x+(pi)/(4))=3 ta...

    Text Solution

    |

  2. in any triangle ABC, which is not right angled Sigma cosA.cosecB.cosec...

    Text Solution

    |

  3. If P(n) = cos^(n)theta +sin^(n)theta, then P(2) - P(1) is equal to :

    Text Solution

    |

  4. If tan^(2)x+secx -a = 0 has atleast one solution, then complete set of...

    Text Solution

    |

  5. 1/2tan(alpha/2)+1/4tan(alpha/4)+1/8tan(alpha/8)....1/2^ntan(alpha/2^n)...

    Text Solution

    |

  6. Suppose sin^3xsin3x=sum(m=0)^n Cmcosm x is an identity in x , where ...

    Text Solution

    |

  7. Find the ratio of greatest value of 2-cos x+ sin^(2)x to its least val...

    Text Solution

    |

  8. Find the number of solution for , sin 5 theta * cos 3 theta = sin 9 th...

    Text Solution

    |

  9. Find the roots of the equation x^2+7x-1=0

    Text Solution

    |

  10. If (1+tan1^(@)) *(1+tan2^(@))*(1+tan3^(@)) …….(1+tan45^(@)) = 2^(n), t...

    Text Solution

    |

  11. In a DeltaPQR, if 3 sin P+4 cos Q=6 and 4 sin Q+3 cos P=1, then the an...

    Text Solution

    |

  12. If U(n) = sin n theta*sec^(n)theta, V(n) = cosntheta*sec^(n)theta for ...

    Text Solution

    |

  13. If sinx+cosx+tanx+cotx+secx+cosecx = 7 and sin2x = a-bsqrt2, then orde...

    Text Solution

    |

  14. If sin^2A=x , then sinAsin2Asin3Asin4A is a polynomial in x , the sum ...

    Text Solution

    |

  15. 1/(cosalpha+cos3alpha)+1/(cosalpha+cos5alpha)....1/(cosalpha+cos(2n+1)...

    Text Solution

    |

  16. Range of f(x)=log(sqrt(5))(sqrt(2))(sinx-cosx)+3) is

    Text Solution

    |

  17. The equation 3^("sin"2x + 2"cos"^(2)x) + 3^(1-"sin"2x +2"sin"^(2)x) = ...

    Text Solution

    |

  18. Solve the equation 4^(sin 2x+2 cos^2 x)+4^(1-sin 2 x+2 sin^2 x)=65

    Text Solution

    |

  19. If sec theta= x+1/(4x) then sec theta+ tan theta= (a) x, 1/(x), (b) 2x...

    Text Solution

    |

  20. If sin[(pi)/(4)cottheta] = cos[(pi)/(4)tantheta] then theta can be :

    Text Solution

    |