Home
Class 12
MATHS
Solve the equation 4^(sin 2x+2 cos^2 x)+...

Solve the equation `4^(sin 2x+2 cos^2 x)+4^(1-sin 2 x+2 sin^2 x)=65`

A

-1

B

2

C

`sqrt2`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 4^{\sin 2x + 2 \cos^2 x} + 4^{1 - \sin 2x + 2 \sin^2 x} = 65 \), we can follow these steps: ### Step 1: Rewrite the equation We start with the given equation: \[ 4^{\sin 2x + 2 \cos^2 x} + 4^{1 - \sin 2x + 2 \sin^2 x} = 65 \] We can rewrite the terms using the property of exponents: \[ 4^{\sin 2x} \cdot 4^{2 \cos^2 x} + 4^{1 - \sin 2x} \cdot 4^{2 \sin^2 x} = 65 \] ### Step 2: Simplify the terms Notice that \( 4^{2 \cos^2 x} = (4^{\cos^2 x})^2 \) and \( 4^{2 \sin^2 x} = (4^{\sin^2 x})^2 \). Let’s denote: \[ t = 4^{\sin 2x} \] Then, we can express the equation as: \[ t \cdot 4^{2 \cos^2 x} + \frac{4}{t} \cdot 4^{2 \sin^2 x} = 65 \] ### Step 3: Substitute \( t \) We can substitute \( t = 4^{\sin 2x} \) into the equation: \[ t \cdot 4^{2 \cos^2 x} + \frac{4}{t} \cdot 4^{2 \sin^2 x} = 65 \] This can be rewritten as: \[ t \cdot 4^{2 \cos^2 x} + \frac{4^{1 + 2 \sin^2 x}}{t} = 65 \] ### Step 4: Let \( u = 4^{\cos^2 x} \) Let: \[ u = 4^{\cos^2 x} \] Then, the equation becomes: \[ t \cdot u^2 + \frac{4}{t} \cdot \frac{4}{u} = 65 \] ### Step 5: Multiply through by \( t \) Multiply the entire equation by \( t \): \[ t^2 u^2 + 4 = 65t \] Rearranging gives us: \[ t^2 u^2 - 65t + 4 = 0 \] ### Step 6: Solve the quadratic equation This is a quadratic equation in \( t \). We can use the quadratic formula: \[ t = \frac{65 \pm \sqrt{65^2 - 4 \cdot 1 \cdot 4}}{2 \cdot 1} \] Calculating the discriminant: \[ 65^2 - 16 = 4225 - 16 = 4209 \] Thus: \[ t = \frac{65 \pm \sqrt{4209}}{2} \] ### Step 7: Find values of \( t \) Calculating \( \sqrt{4209} \) gives approximately \( 64.9 \): \[ t = \frac{65 \pm 64.9}{2} \] This gives us two possible values for \( t \): 1. \( t_1 \approx \frac{129.9}{2} \approx 64.95 \) 2. \( t_2 \approx \frac{0.1}{2} \approx 0.05 \) ### Step 8: Solve for \( x \) Recall that \( t = 4^{\sin 2x} \): 1. For \( t_1 \approx 64 \): \[ 4^{\sin 2x} = 64 \implies \sin 2x = 3 \] (not possible since \( \sin \) cannot exceed 1) 2. For \( t_2 \approx 0.05 \): \[ 4^{\sin 2x} = 0.05 \implies \sin 2x = -1 \] Thus: \[ 2x = \frac{3\pi}{2} + 2n\pi \implies x = \frac{3\pi}{4} + n\pi \] ### Final Solution The solution to the equation is: \[ x = \frac{3\pi}{4} + n\pi \quad (n \in \mathbb{Z}) \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|15 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|20 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|11 Videos
  • THREE DIMENSIONAL GEOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|34 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (TRUE/ FALSE)|30 Videos

Similar Questions

Explore conceptually related problems

Solve the equation sin^2x-cos^2x=(1)/(2)

Solve the equation sin^(2)x + cos^(2)3x=1

Q. x=a satisfy the equation 3^(sin 2x+2 cos^2 x)+3^(1-sin 2x+2 sin^ 2x)=28(sin 2a-cos 2a)^2+8sin 4a is equal to :

Solve the equation, 4^(sin2x + 2cos^(2)x+ 2sin^(2)x)=64 .

Solve the equation sin x + cos x -2sqrt2 sin x cos x =0

Solve the equation ( sin x + cos x )^(1+ sin 2x )=2 , when -pi le x le pi .

Solve the equation 4 sin x cos x + 2 sin x + 2 cos x + 1 = 0

Solve the equation ( cos x - sin x )(2 tan x +(1)/( cos x ))+2 =0

Solve the equation sin^4x+cos^4x-2sin^2x+(3sin^2 2x)/4=0

Number of solutions of equation 2"sin" x/2 cos^(2) x-2 "sin" x/2 sin^(2) x=cos^(2) x-sin^(2) x for x in [0, 4pi] is

VMC MODULES ENGLISH-TRIGONOMETRIC IDENTITIES AND EQUATIONS -LEVEL -2
  1. If alpha, beta, gamma, delta satisfy the equation tan(x+(pi)/(4))=3 ta...

    Text Solution

    |

  2. in any triangle ABC, which is not right angled Sigma cosA.cosecB.cosec...

    Text Solution

    |

  3. If P(n) = cos^(n)theta +sin^(n)theta, then P(2) - P(1) is equal to :

    Text Solution

    |

  4. If tan^(2)x+secx -a = 0 has atleast one solution, then complete set of...

    Text Solution

    |

  5. 1/2tan(alpha/2)+1/4tan(alpha/4)+1/8tan(alpha/8)....1/2^ntan(alpha/2^n)...

    Text Solution

    |

  6. Suppose sin^3xsin3x=sum(m=0)^n Cmcosm x is an identity in x , where ...

    Text Solution

    |

  7. Find the ratio of greatest value of 2-cos x+ sin^(2)x to its least val...

    Text Solution

    |

  8. Find the number of solution for , sin 5 theta * cos 3 theta = sin 9 th...

    Text Solution

    |

  9. Find the roots of the equation x^2+7x-1=0

    Text Solution

    |

  10. If (1+tan1^(@)) *(1+tan2^(@))*(1+tan3^(@)) …….(1+tan45^(@)) = 2^(n), t...

    Text Solution

    |

  11. In a DeltaPQR, if 3 sin P+4 cos Q=6 and 4 sin Q+3 cos P=1, then the an...

    Text Solution

    |

  12. If U(n) = sin n theta*sec^(n)theta, V(n) = cosntheta*sec^(n)theta for ...

    Text Solution

    |

  13. If sinx+cosx+tanx+cotx+secx+cosecx = 7 and sin2x = a-bsqrt2, then orde...

    Text Solution

    |

  14. If sin^2A=x , then sinAsin2Asin3Asin4A is a polynomial in x , the sum ...

    Text Solution

    |

  15. 1/(cosalpha+cos3alpha)+1/(cosalpha+cos5alpha)....1/(cosalpha+cos(2n+1)...

    Text Solution

    |

  16. Range of f(x)=log(sqrt(5))(sqrt(2))(sinx-cosx)+3) is

    Text Solution

    |

  17. The equation 3^("sin"2x + 2"cos"^(2)x) + 3^(1-"sin"2x +2"sin"^(2)x) = ...

    Text Solution

    |

  18. Solve the equation 4^(sin 2x+2 cos^2 x)+4^(1-sin 2 x+2 sin^2 x)=65

    Text Solution

    |

  19. If sec theta= x+1/(4x) then sec theta+ tan theta= (a) x, 1/(x), (b) 2x...

    Text Solution

    |

  20. If sin[(pi)/(4)cottheta] = cos[(pi)/(4)tantheta] then theta can be :

    Text Solution

    |