Home
Class 12
MATHS
The expression (cos6x+6cos4x+15cos2x+10)...

The expression `(cos6x+6cos4x+15cos2x+10)/(cos5x+5cos3x+10cosx) = lambdacosx`, then the value of `lambda` is ___________.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \frac{\cos 6x + 6\cos 4x + 15\cos 2x + 10}{\cos 5x + 5\cos 3x + 10\cos x} = \lambda \cos x, \] we will simplify both the numerator and the denominator step by step. ### Step 1: Simplifying the Numerator The numerator is \[ \cos 6x + 6\cos 4x + 15\cos 2x + 10. \] We can use the cosine addition formula and identities to simplify this. We will rewrite \(6\cos 4x\) and \(15\cos 2x\): - \(6\cos 4x = 2(\cos 4x + \cos 4x + \cos 4x)\) - \(15\cos 2x = 5(\cos 2x + \cos 2x + \cos 2x + \cos 2x + \cos 2x)\) Now, we can group terms: \[ \cos 6x + 2(\cos 4x + \cos 4x + \cos 4x) + 5(\cos 2x + \cos 2x + \cos 2x + \cos 2x + \cos 2x) + 10. \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|20 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|11 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise LEVEL -2|49 Videos
  • THREE DIMENSIONAL GEOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|34 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (TRUE/ FALSE)|30 Videos

Similar Questions

Explore conceptually related problems

The expression (cos6x+6cos4x+15cos2x+10)/(cos5x+5cos3x+10cosx) is equal to

If (cos6x+6cos4x+15cos2x+10)/(cos5x+5cos3x+10cosx)=1 , then find the smallest positive value of x.

If x=cos 10^@ cos20^@ cos40^@ , then the value of x is

int cos2x*cos4x*cos6x dx

If e^(cos x) -e^(-cos x) = 4 , then the value of cos x, is

int cos 2x . cos 4x . cos 6x dx

If 5(tan^2x - cos^2x)=2cos 2x + 9 , then the value of cos4x is

If 5(tan^2x - cos^2x)=2cos 2x + 9 , then the value of cos4x is

Solve cosx+cos3x-2cos2x=0

Solve: cos3x+cosx-cos2x=0