Home
Class 12
MATHS
For x in (0, pi), the equation "sin"x ...

For `x in (0, pi)`, the equation
`"sin"x + 2"sin" 2x-"sin" 3x = 3` has

A

infinitely many solutions

B

three solutions

C

one solution

D

no solution

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin x + 2 \sin 2x - \sin 3x = 3 \) for \( x \in (0, \pi) \), we will follow these steps: ### Step 1: Substitute the trigonometric identities Recall the identities: - \( \sin 2x = 2 \sin x \cos x \) - \( \sin 3x = 3 \sin x - 4 \sin^3 x \) Substituting these into the equation gives: \[ \sin x + 2(2 \sin x \cos x) - (3 \sin x - 4 \sin^3 x) = 3 \] ### Step 2: Simplify the equation Now, simplify the equation: \[ \sin x + 4 \sin x \cos x - 3 \sin x + 4 \sin^3 x = 3 \] This simplifies to: \[ (4 \sin x \cos x + 4 \sin^3 x - 2 \sin x) = 3 \] ### Step 3: Factor out \( \sin x \) Factor out \( \sin x \): \[ \sin x (4 \cos x + 4 \sin^2 x - 2) = 3 \] ### Step 4: Rearrange the equation Rearranging gives: \[ 4 \sin x \cos x + 4 \sin^3 x - 2 \sin x - 3 = 0 \] ### Step 5: Analyze the equation To find the solutions, we need to analyze the left-hand side. The left-hand side must equal 3, which is the maximum value for \( \sin x \) in the interval \( (0, \pi) \). ### Step 6: Determine the maximum values The maximum value of \( \sin x \) is 1, which occurs at \( x = \frac{\pi}{2} \). At this point: \[ \sin x = 1 \implies 4 \cdot 1 \cdot \cos\left(\frac{\pi}{2}\right) + 4 \cdot 1^3 - 2 \cdot 1 = 4 - 2 = 2 \] This is less than 3. ### Step 7: Check other possible values Next, check \( \sin x \) values at \( x = \frac{\pi}{3} \): \[ \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}, \quad \cos\left(\frac{\pi}{3}\right) = \frac{1}{2} \] Substituting these values: \[ 4 \cdot \frac{\sqrt{3}}{2} \cdot \frac{1}{2} + 4 \cdot \left(\frac{\sqrt{3}}{2}\right)^3 - 2 \cdot \frac{\sqrt{3}}{2} \] Calculating this gives: \[ 4 \cdot \frac{\sqrt{3}}{4} + 4 \cdot \frac{3\sqrt{3}}{8} - \sqrt{3} = \sqrt{3} + \frac{3\sqrt{3}}{2} - \sqrt{3} = \frac{3\sqrt{3}}{2} \] This is also less than 3. ### Step 8: Conclusion Since the left-hand side cannot reach 3 for any \( x \in (0, \pi) \), we conclude that the equation has no solutions in the given interval. ### Final Answer The equation \( \sin x + 2 \sin 2x - \sin 3x = 3 \) has no solutions for \( x \in (0, \pi) \). ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Main (Archive)|20 Videos
  • THREE DIMENSIONAL GEOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|34 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (TRUE/ FALSE)|30 Videos

Similar Questions

Explore conceptually related problems

For x in (0,pi) the equation sinx+2sin2x-sin3x=3 has

sin x sin 2x sin 3x

For x∈(0,π) , the equation sinx+2sin2x−sin3x=3 , has

The equation |"sin" x| = "sin" x + 3"has in" [0, 2pi]

The number of solution of the equation 2 "sin"^(3) x + 2 "cos"^(3) x - 3 "sin" 2x + 2 = 0 "in" [0, 4pi] , is

The solution of the equation sin 2x + sin 4x = 2 sin 3x is

The number of values of x in (0, pi) satisfying the equation (sqrt(3) "sin" x + "cos" x) ^(sqrt(sqrt(3)"sin" 2x -"cos" 2x+ 2)) = 4 , is

The solution of the equation "cos"^(2) x-2 "cos" x = 4 "sin" x - "sin" 2x (0 le x le pi) , is

Solve 4 sin x sin 2x sin 4x = sin 3x .

The number of values of x in the interval [0, 3pi] satisfying the equation 2sin^2x + 5sin x- 3 = 0 is