Home
Class 12
MATHS
tan(ilog((a+ib)/(a-ib)))=...

`tan(ilog((a+ib)/(a-ib)))=`

A

`(ab)/(a^(2)+b^(2))`

B

`(2ab)/(a^(2)-b^(2))`

C

`(ab)/(a^(2)-b^(2))`

D

`(2ab)/(a^(2)+b^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \tan(i \log\left(\frac{a + ib}{a - ib}\right)) \), we will follow these steps: ### Step 1: Simplify the expression inside the logarithm We start with the expression: \[ \frac{a + ib}{a - ib} \] To simplify this, we can multiply the numerator and the denominator by the conjugate of the denominator: \[ \frac{(a + ib)(a + ib)}{(a - ib)(a + ib)} \] ### Step 2: Calculate the denominator The denominator can be simplified using the difference of squares: \[ (a - ib)(a + ib) = a^2 - (ib)^2 = a^2 - (-b^2) = a^2 + b^2 \] ### Step 3: Calculate the numerator The numerator becomes: \[ (a + ib)(a + ib) = (a + ib)^2 = a^2 + 2iab - b^2 = (a^2 - b^2) + 2iab \] ### Step 4: Combine results Now we can write: \[ \frac{(a^2 - b^2) + 2iab}{a^2 + b^2} \] ### Step 5: Rewrite the logarithm Now we can rewrite the logarithm: \[ \log\left(\frac{(a^2 - b^2) + 2iab}{a^2 + b^2}\right) \] ### Step 6: Use properties of logarithms Using the property of logarithms, we can separate the real and imaginary parts: \[ \log\left(\frac{(a^2 - b^2)}{a^2 + b^2}\right) + i \log\left(\frac{2b}{a^2 + b^2}\right) \] ### Step 7: Substitute back into the tangent function Now we substitute this back into our original expression: \[ \tan\left(i \left(\log\left(\frac{(a^2 - b^2)}{a^2 + b^2}\right) + i \log\left(\frac{2b}{a^2 + b^2}\right)\right)\right) \] ### Step 8: Simplify the tangent This becomes: \[ \tan\left(-\log\left(\frac{(a^2 - b^2)}{a^2 + b^2}\right) + \log\left(\frac{2b}{a^2 + b^2}\right)\right) \] ### Step 9: Final simplification Using the identity for tangent of a sum: \[ \tan(-x) = -\tan(x) \] We can simplify this to: \[ -\tan\left(\log\left(\frac{2b}{(a^2 - b^2)}\right)\right) \] ### Step 10: Find the final expression Using the definition of tangent: \[ \tan\left(\log\left(\frac{2b}{(a^2 - b^2)}\right)\right) = \frac{2b}{(a^2 - b^2)} \] Thus, we have: \[ \tan(i \log\left(\frac{a + ib}{a - ib}\right)) = -\frac{2b}{(a^2 - b^2)} \] ### Final Result The final answer is: \[ \tan(i \log\left(\frac{a + ib}{a - ib}\right)) = \frac{2ab}{b^2 - a^2} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise NUMRICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise JEE ARCHIVE|76 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise LEVEL - 1|90 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos

Similar Questions

Explore conceptually related problems

Prove that tan(ilog_e((a-ib)/(a+ib)))=(2ab)/(a^2-b^2) (where a, b in R^+ )

The value of modulus of (a + ib)/(a - ib) is ________

If (a+ib)/(c+id)=x+i y , prove that(i) (a-ib)/(c-id)=(x-iy) (ii) (a^2+b^2)/(c^2+d^2)=(x^2+y^2)

If (a+ib)/(c+id)=x+i y , prove that(i) (a-ib)/(c-id)=(x-iy) (ii) (a^2+b^2)/(c^2+d^2)=(x^2+y^2)

If (a_(1)+ib_(1))(a_(2)+ib_(2))………………(a_(n)+ib_(n))=A+iB , then sum_(i=1)^(n) tan^(-1)(b_(i)/a_(i)) is equal to

If the number of ordered pairs (a,b) where a,b in R such that (a+ib)^(5015)=(a-ib)^(3) is k , then the unit digit of k is equal to________

A thermodynamic system is taken from an initial state I with internal energy U_i=-100J to the final state f along two different paths iaf and ibf, as schematically shown in the figure. The work done by the system along the pat af, ib and bf are W_(af)=200J, W_(ib)=50J and W_(bf)=100J respectively. The heat supplied to the system along the path iaf, ib and bf are Q_(iaf), Q_(ib),Q_(bf) respectively. If the internal energy of the system in the state b is U_b=200J and Q_(iaf)=500J , The ratio (Q_(bf))/(Q_(ib)) is

Express (1 /(2 -2i)+3/(1+i)) ((3+ 4i)/(2-4i)) in the form of a +ib

Express the following in the form a+ib: ((1+i)/(1-i))^2

If (a-ib)/(a+ib)= (1+i)/(1-i) , then show that a+b=0

VMC MODULES ENGLISH-COMPLEX NUMBERS -LEVEL - 2
  1. The system of equations |z+1-i|=sqrt2 and |z| = 3 has how many soluti...

    Text Solution

    |

  2. tan(ilog((a+ib)/(a-ib)))=

    Text Solution

    |

  3. The value of the expression (1+1/omega)(1+1/omega^(2))+(2+1/omega)(2+...

    Text Solution

    |

  4. If omega is a cube root of unity but not equal to 1, then minimum valu...

    Text Solution

    |

  5. Consider the complex number z = (1 - isin theta)//(1+ icos theta). ...

    Text Solution

    |

  6. Consider the complex number z = (1 - isin theta)//(1+ icos theta). ...

    Text Solution

    |

  7. about to only mathematics

    Text Solution

    |

  8. omega is an imaginary root of unity. Prove that If a+b+c=0, then prove...

    Text Solution

    |

  9. omega is an imaginary root of unity. Prove that If a+b+c=0, then prove...

    Text Solution

    |

  10. The value of (a+bomega+comega^2)/(b+comega+aomega^2)+(a+bomega+comega^...

    Text Solution

    |

  11. For a complex number z the minimum value of |z|+|z-cos alpha-i sin alp...

    Text Solution

    |

  12. If 1,alpha(1),alpha(2),alpha(3),...,alpha(n-1) are n, nth roots of uni...

    Text Solution

    |

  13. If k>0, |z|=|w|=k, and alpha=(z-bar w)/(k^2+zbar(w)), then Re(alpha) ...

    Text Solution

    |

  14. If |z-1|=1, where z is a point on the argand plane, show that(z-2)/(z)...

    Text Solution

    |

  15. Let 1, z(1),z(2),z(3),…., z(n-1) be the nth roots of unity. Then pro...

    Text Solution

    |

  16. If the roots of (z-1)^n=i(z+1)^n are plotted in ten Arg and plane, the...

    Text Solution

    |

  17. If for complex numbers z1 and z2 and |1-bar(z1)z2|^2-|z1-z2|^2=k(1-|z1...

    Text Solution

    |

  18. If |a(i)|lt1lamda(i)ge0 for i=1,2,3,.......nandlamda(1)+lamda(2)+........

    Text Solution

    |

  19. if (tanalpha-i(sin ""(alpha)/(2)+cos ""(alpha)/(2)))/(1+2 i sin ""(alp...

    Text Solution

    |

  20. If sqrt(1-c^(2))=nc-1andz=e^(itheta)," then "(c)/(2n)(1+nz)(1+(n)/(z))...

    Text Solution

    |