Home
Class 12
MATHS
The value of the expression (1+1/omega)...

The value of the expression `(1+1/omega)(1+1/omega^(2))+(2+1/omega)(2+1/omega^(2))+(3+1/omega^(2))+…………..+(n+1/omega)(n+1/omega^(2))`, where `omega` is an imaginary cube root of unity, is

A

`(n(n^(2)+2))/(3)`

B

`(n(n^(2)-2))/(3)`

C

`(n(n^(2)+1))/(3)`

D

`(n(n^(2)-1))/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ S = (1 + \frac{1}{\omega})(1 + \frac{1}{\omega^2}) + (2 + \frac{1}{\omega})(2 + \frac{1}{\omega^2}) + (3 + \frac{1}{\omega})(3 + \frac{1}{\omega^2}) + \ldots + (n + \frac{1}{\omega})(n + \frac{1}{\omega^2}), \] where \(\omega\) is an imaginary cube root of unity, we will proceed step by step. ### Step 1: Understanding \(\omega\) The cube roots of unity are given by: \[ \omega = e^{2\pi i / 3} \quad \text{and} \quad \omega^2 = e^{-2\pi i / 3}. \] They satisfy the equations: \[ 1 + \omega + \omega^2 = 0 \quad \text{and} \quad \omega^3 = 1. \] ### Step 2: Simplifying the Terms We can rewrite each term in the summation: \[ (1 + \frac{1}{\omega})(1 + \frac{1}{\omega^2}) = (1 + \frac{1}{\omega})(1 + \frac{1}{\omega^2}). \] Using the property of \(\omega\): \[ \frac{1}{\omega} = \omega^2 \quad \text{and} \quad \frac{1}{\omega^2} = \omega, \] we can rewrite: \[ (1 + \omega^2)(1 + \omega). \] ### Step 3: Expanding the Terms Now, we expand: \[ (1 + \omega)(1 + \omega^2) = 1 + \omega + \omega^2 + \omega \cdot \omega^2 = 1 + (-1) + \omega \cdot \omega^2 = 1 - 1 + \omega^3 = 1. \] Thus, each term simplifies to 1. ### Step 4: Summing the Terms Now, we can express the entire sum \(S\): \[ S = \sum_{r=1}^{n} (r + \frac{1}{\omega})(r + \frac{1}{\omega^2}) = \sum_{r=1}^{n} 1 = n. \] ### Step 5: Final Expression Therefore, the value of the expression is: \[ S = n. \] ### Conclusion The final answer is: \[ \boxed{n}. \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise NUMRICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise JEE ARCHIVE|76 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise LEVEL - 1|90 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos

Similar Questions

Explore conceptually related problems

The value of the expression 1.(2-omega).(2-omega^2)+2.(3-omega)(3-omega^2)+.+(n-1)(n-omega)(n-omega^2), where omega is an imaginary cube root of unity, is………

The value of the expression 2(1+(1)/(omega))(1+(1)/(omega^(2)))+3(2+(1)/(omega))(2+(1)/(omega^(2)))+4(3+(1)/(omega^()))(3+(1)/(omega^(2)))+.......+(n+1)(n+(1)/(omega^()))(n+(1)/(omega^(2))) where omega is an imaginary cube roots of unity, is:

The value of the determinant |(1,omega^(3),omega^(5)),(omega^(3),1,omega^(4)),(omega^(5),omega^(4),1)| , where omega is an imaginary cube root of unity, is

Prove the following (1- omega + omega^(2)) (1 + omega- omega^(2)) (1 - omega- omega^(2))= 8

If A =({:( 1,1,1),( 1,omega ^(2) , omega ),( 1 ,omega , omega ^(2)) :}) where omega is a complex cube root of unity then adj -A equals

If omega is a cube root of unity, then 1+omega = …..

Prove the following (1- omega + omega^(2)) (1- omega^(2) + omega^(4)) (1- omega^(4) + omega^(8)) …. to 2n factors = 2^(2n) where , ω is the cube root of unity.

Prove the following (1+ omega) (1+ omega^(2)) (1 + omega^(4)) (1 + omega^(8)) ….to 2n factors = 1

Evaluate |(1,omega,omega^2),(omega,omega^2,1),(omega^2,omega, omega)| where omega is cube root of unity.

If omega is a cube root of unity, then 1+ omega^(2)= …..

VMC MODULES ENGLISH-COMPLEX NUMBERS -LEVEL - 2
  1. The system of equations |z+1-i|=sqrt2 and |z| = 3 has how many soluti...

    Text Solution

    |

  2. tan(ilog((a+ib)/(a-ib)))=

    Text Solution

    |

  3. The value of the expression (1+1/omega)(1+1/omega^(2))+(2+1/omega)(2+...

    Text Solution

    |

  4. If omega is a cube root of unity but not equal to 1, then minimum valu...

    Text Solution

    |

  5. Consider the complex number z = (1 - isin theta)//(1+ icos theta). ...

    Text Solution

    |

  6. Consider the complex number z = (1 - isin theta)//(1+ icos theta). ...

    Text Solution

    |

  7. about to only mathematics

    Text Solution

    |

  8. omega is an imaginary root of unity. Prove that If a+b+c=0, then prove...

    Text Solution

    |

  9. omega is an imaginary root of unity. Prove that If a+b+c=0, then prove...

    Text Solution

    |

  10. The value of (a+bomega+comega^2)/(b+comega+aomega^2)+(a+bomega+comega^...

    Text Solution

    |

  11. For a complex number z the minimum value of |z|+|z-cos alpha-i sin alp...

    Text Solution

    |

  12. If 1,alpha(1),alpha(2),alpha(3),...,alpha(n-1) are n, nth roots of uni...

    Text Solution

    |

  13. If k>0, |z|=|w|=k, and alpha=(z-bar w)/(k^2+zbar(w)), then Re(alpha) ...

    Text Solution

    |

  14. If |z-1|=1, where z is a point on the argand plane, show that(z-2)/(z)...

    Text Solution

    |

  15. Let 1, z(1),z(2),z(3),…., z(n-1) be the nth roots of unity. Then pro...

    Text Solution

    |

  16. If the roots of (z-1)^n=i(z+1)^n are plotted in ten Arg and plane, the...

    Text Solution

    |

  17. If for complex numbers z1 and z2 and |1-bar(z1)z2|^2-|z1-z2|^2=k(1-|z1...

    Text Solution

    |

  18. If |a(i)|lt1lamda(i)ge0 for i=1,2,3,.......nandlamda(1)+lamda(2)+........

    Text Solution

    |

  19. if (tanalpha-i(sin ""(alpha)/(2)+cos ""(alpha)/(2)))/(1+2 i sin ""(alp...

    Text Solution

    |

  20. If sqrt(1-c^(2))=nc-1andz=e^(itheta)," then "(c)/(2n)(1+nz)(1+(n)/(z))...

    Text Solution

    |