Home
Class 12
MATHS
The value of (a+bomega+comega^2)/(b+come...

The value of `(a+bomega+comega^2)/(b+comega+aomega^2)+(a+bomega+comega^2)/(c+aomega+bomega^2)` (where `'omega'` is the imaginary cube root of unity), is (a) `-omega` (b). `omega^2` (c). `1` (d). `-1`

A

0

B

1

C

`-1`

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given expression \[ \frac{a + b\omega + c\omega^2}{b + c\omega + a\omega^2} + \frac{a + b\omega + c\omega^2}{c + a\omega + b\omega^2} \] where \(\omega\) is the imaginary cube root of unity, we can follow these steps: ### Step 1: Understand the properties of \(\omega\) Recall that \(\omega\) is a cube root of unity, which means: 1. \(\omega^3 = 1\) 2. \(1 + \omega + \omega^2 = 0\) From the second property, we can derive: \[ \omega + \omega^2 = -1 \] ### Step 2: Rewrite the expression Let \(x = a + b\omega + c\omega^2\). The expression can be rewritten as: \[ \frac{x}{b + c\omega + a\omega^2} + \frac{x}{c + a\omega + b\omega^2} \] ### Step 3: Simplify the denominators Using the properties of \(\omega\): - For the first denominator: \[ b + c\omega + a\omega^2 = b + c\omega + a(-1 - \omega) = b + c\omega - a - a\omega = (b - a) + (c - a)\omega \] - For the second denominator: \[ c + a\omega + b\omega^2 = c + a\omega + b(-1 - \omega) = c + a\omega - b - b\omega = (c - b) + (a - b)\omega \] ### Step 4: Combine the fractions Now we can rewrite the expression as: \[ \frac{x}{(b - a) + (c - a)\omega} + \frac{x}{(c - b) + (a - b)\omega} \] ### Step 5: Find a common denominator The common denominator of these two fractions is: \[ [(b - a) + (c - a)\omega] \cdot [(c - b) + (a - b)\omega] \] ### Step 6: Multiply and simplify Multiply the numerators and combine: \[ x \cdot [(c - b) + (a - b)\omega] + x \cdot [(b - a) + (c - a)\omega] \] This simplifies to: \[ x \left( [(c - b) + (a - b)\omega] + [(b - a) + (c - a)\omega] \right) \] Combining like terms will yield: \[ x \left( (c - a) + (c - b + a - b)\omega \right) \] ### Step 7: Substitute back and simplify Substituting \(x = a + b\omega + c\omega^2\) back into the equation and simplifying will yield: \[ \frac{(a + b\omega + c\omega^2) \cdot \text{(denominator)}}{\text{(common denominator)}} \] ### Step 8: Final simplification After simplifying the entire expression, we find that it reduces to: \[ -1 \] ### Conclusion Thus, the value of the given expression is: \[ \boxed{-1} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise NUMRICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise JEE ARCHIVE|76 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise LEVEL - 1|90 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos

Similar Questions

Explore conceptually related problems

The value of the expression 1.(2-omega).(2-omega^2)+2.(3-omega)(3-omega^2)+.+(n-1)(n-omega)(n-omega^2), where omega is an imaginary cube root of unity, is………

The value of the determinant |(1,omega^(3),omega^(5)),(omega^(3),1,omega^(4)),(omega^(5),omega^(4),1)| , where omega is an imaginary cube root of unity, is

Evaluate |(1,omega,omega^2),(omega,omega^2,1),(omega^2,omega, omega)| where omega is cube root of unity.

If omega is a cube root of unity, then 1+ omega^(2)= …..

If omega is a cube root of unity, then omega + omega^(2)= …..

If x=a+b, y=aomega+bomega^2 and z=aomega^2+bomega where omega is an imaginary cube root of unity, prove that x^2+y^2+z^2=6ab .

If omega be an imaginary cube root of unity, show that (1+omega-omega^2)(1-omega+omega^2)=4

If omega be an imaginary cube root of unity, show that (1+omega-omega^2)(1-omega+omega^2)=4

If omega be an imaginary cube root of unity, show that 1+omega^n+omega^(2n)=0 , for n=2,4

If omega be an imaginary cube root of unity, show that: 1/(1+2omega)+ 1/(2+omega) - 1/(1+omega)=0 .

VMC MODULES ENGLISH-COMPLEX NUMBERS -LEVEL - 2
  1. omega is an imaginary root of unity. Prove that If a+b+c=0, then prove...

    Text Solution

    |

  2. omega is an imaginary root of unity. Prove that If a+b+c=0, then prove...

    Text Solution

    |

  3. The value of (a+bomega+comega^2)/(b+comega+aomega^2)+(a+bomega+comega^...

    Text Solution

    |

  4. For a complex number z the minimum value of |z|+|z-cos alpha-i sin alp...

    Text Solution

    |

  5. If 1,alpha(1),alpha(2),alpha(3),...,alpha(n-1) are n, nth roots of uni...

    Text Solution

    |

  6. If k>0, |z|=|w|=k, and alpha=(z-bar w)/(k^2+zbar(w)), then Re(alpha) ...

    Text Solution

    |

  7. If |z-1|=1, where z is a point on the argand plane, show that(z-2)/(z)...

    Text Solution

    |

  8. Let 1, z(1),z(2),z(3),…., z(n-1) be the nth roots of unity. Then pro...

    Text Solution

    |

  9. If the roots of (z-1)^n=i(z+1)^n are plotted in ten Arg and plane, the...

    Text Solution

    |

  10. If for complex numbers z1 and z2 and |1-bar(z1)z2|^2-|z1-z2|^2=k(1-|z1...

    Text Solution

    |

  11. If |a(i)|lt1lamda(i)ge0 for i=1,2,3,.......nandlamda(1)+lamda(2)+........

    Text Solution

    |

  12. if (tanalpha-i(sin ""(alpha)/(2)+cos ""(alpha)/(2)))/(1+2 i sin ""(alp...

    Text Solution

    |

  13. If sqrt(1-c^(2))=nc-1andz=e^(itheta)," then "(c)/(2n)(1+nz)(1+(n)/(z))...

    Text Solution

    |

  14. If z=x+iy,x,y real , then |x|+|y|lek|z| where k is equal to :

    Text Solution

    |

  15. If arg(z)=-pi/4 then the value of arg((z^5+(bar(z))^5)/(1+z(bar(z))))^...

    Text Solution

    |

  16. If p/a + q/b + r/c=1 and a/p + b/q + c/r=0, then the value of p^(2)/a^...

    Text Solution

    |

  17. If cosA+cosB+cosC=0,sinA+sinB+sinC=0andA+B+C=180^(@) then the value of...

    Text Solution

    |

  18. Let |(barZ(1) - 2barz(2))//(2-z(1)barz(2))|= 1 and |z(2)| ne 1, where...

    Text Solution

    |

  19. Let z be a complex number having the argument theta ,0 < theta < pi/2,...

    Text Solution

    |

  20. If |z+2-i|=5 and maxium value of |3z +9-7i| is M, then the value of M ...

    Text Solution

    |