Home
Class 12
MATHS
If for complex numbers z1 and z2 and |1-...

If for complex numbers `z_1` and `z_2` and `|1-bar(z_1)z_2|^2-|z_1-z_2|^2=k(1-|z_1|^2)(1-|z_2|^2)` then `k` is equal to:

A

1

B

`-1`

C

2

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to analyze the expression step by step. The expression provided is: \[ |1 - \overline{z_1} z_2|^2 - |z_1 - z_2|^2 = k(1 - |z_1|^2)(1 - |z_2|^2) \] ### Step 1: Expand the left-hand side First, we will expand both terms on the left-hand side. 1. **Calculate \(|1 - \overline{z_1} z_2|^2\)**: \[ |1 - \overline{z_1} z_2|^2 = (1 - \overline{z_1} z_2)(1 - z_1 \overline{z_2}) = 1 - \overline{z_1} z_2 - z_1 \overline{z_2} + |z_1|^2 |z_2|^2 \] 2. **Calculate \(|z_1 - z_2|^2\)**: \[ |z_1 - z_2|^2 = (z_1 - z_2)(\overline{z_1} - \overline{z_2}) = |z_1|^2 - z_1 \overline{z_2} - z_2 \overline{z_1} + |z_2|^2 \] ### Step 2: Substitute back into the equation Now, substituting these expansions back into the original equation: \[ \left(1 - \overline{z_1} z_2 - z_1 \overline{z_2} + |z_1|^2 |z_2|^2\right) - \left(|z_1|^2 - z_1 \overline{z_2} - z_2 \overline{z_1} + |z_2|^2\right) \] ### Step 3: Simplify the expression Now, simplify the left-hand side: \[ 1 - \overline{z_1} z_2 - z_1 \overline{z_2} + |z_1|^2 |z_2|^2 - |z_1|^2 + z_1 \overline{z_2} + z_2 \overline{z_1} - |z_2|^2 \] Combining like terms: \[ 1 - |z_1|^2 - |z_2|^2 + |z_1|^2 |z_2|^2 - \overline{z_1} z_2 + z_2 \overline{z_1} \] ### Step 4: Rearranging Rearranging gives us: \[ 1 - |z_1|^2 - |z_2|^2 + |z_1|^2 |z_2|^2 \] ### Step 5: Equate to the right-hand side Now, we need to equate this to the right-hand side: \[ 1 - |z_1|^2 - |z_2|^2 + |z_1|^2 |z_2|^2 = k(1 - |z_1|^2)(1 - |z_2|^2) \] ### Step 6: Factor the right-hand side The right-hand side can be expanded as: \[ k(1 - |z_1|^2)(1 - |z_2|^2) = k(1 - |z_1|^2 - |z_2|^2 + |z_1|^2 |z_2|^2) \] ### Step 7: Compare coefficients By comparing coefficients from both sides, we can see that: - The coefficient of \(1\) is \(1\) on the left and \(k\) on the right. - The coefficient of \(-|z_1|^2\) and \(-|z_2|^2\) is also \(k\). - The coefficient of \(|z_1|^2 |z_2|^2\) is also \(k\). This leads us to conclude that: \[ k = 1 \] ### Final Answer Thus, the value of \(k\) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise NUMRICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise JEE ARCHIVE|76 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise LEVEL - 1|90 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos

Similar Questions

Explore conceptually related problems

For any two complex numbers z_1 and z_2 prove that: |\z_1+z_2|^2 +|\z_1-z_2|^2=2[|\z_1|^2+|\z_2|^2]

For any two complex numbers z_1 and z_2 , we have |z_1+z_2|^2=|z_1|^2+|z_2|^2 , then

For any two complex numbers z_1 and z_2 , we have |z_1+z_2|^2=|z_1|^2+|z_2|^2 , then

If for complex numbers z_1 and z_2 , arg(z_1) - arg(z_2)=0 , then show that |z_1-z_2| = | |z_1|-|z_2| |

If for the complex numbers z_1 and z_2 , |z_1+z_2|=|z_1-z_2| , then Arg(z_1)-Arg(z_2) is equal to

For any two complex numbers z_(1) and z_(2) |z_(1)+z_(2)|^(2) =(|z_(1)|^(2)+|z_(2)|^(2))

For any two complex number z_1a n d\ z_2 prove that: |z_1+z_2|geq|z_1|-|z_2|

For any two complex number z_1a n d\ z_2 prove that: |z_1-z_2|geq|z_1|-|z_2|

For any two complex number z_1a n d\ z_2 prove that: |z_1-z_2|lt=|z_1|+|z_2|

For any two complex numbers z_1 and z_2 prove that: |\z_1+z_2|^2=|\z_1|^2+|\z_2|^2+2Re bar z_1 z_2

VMC MODULES ENGLISH-COMPLEX NUMBERS -LEVEL - 2
  1. Let 1, z(1),z(2),z(3),…., z(n-1) be the nth roots of unity. Then pro...

    Text Solution

    |

  2. If the roots of (z-1)^n=i(z+1)^n are plotted in ten Arg and plane, the...

    Text Solution

    |

  3. If for complex numbers z1 and z2 and |1-bar(z1)z2|^2-|z1-z2|^2=k(1-|z1...

    Text Solution

    |

  4. If |a(i)|lt1lamda(i)ge0 for i=1,2,3,.......nandlamda(1)+lamda(2)+........

    Text Solution

    |

  5. if (tanalpha-i(sin ""(alpha)/(2)+cos ""(alpha)/(2)))/(1+2 i sin ""(alp...

    Text Solution

    |

  6. If sqrt(1-c^(2))=nc-1andz=e^(itheta)," then "(c)/(2n)(1+nz)(1+(n)/(z))...

    Text Solution

    |

  7. If z=x+iy,x,y real , then |x|+|y|lek|z| where k is equal to :

    Text Solution

    |

  8. If arg(z)=-pi/4 then the value of arg((z^5+(bar(z))^5)/(1+z(bar(z))))^...

    Text Solution

    |

  9. If p/a + q/b + r/c=1 and a/p + b/q + c/r=0, then the value of p^(2)/a^...

    Text Solution

    |

  10. If cosA+cosB+cosC=0,sinA+sinB+sinC=0andA+B+C=180^(@) then the value of...

    Text Solution

    |

  11. Let |(barZ(1) - 2barz(2))//(2-z(1)barz(2))|= 1 and |z(2)| ne 1, where...

    Text Solution

    |

  12. Let z be a complex number having the argument theta ,0 < theta < pi/2,...

    Text Solution

    |

  13. If |z+2-i|=5 and maxium value of |3z +9-7i| is M, then the value of M ...

    Text Solution

    |

  14. If a, b are complex numbers and one of the roots of the equation x^(2)...

    Text Solution

    |

  15. Solve for z : z^2-(3-2i)z=(5i-5)dot

    Text Solution

    |

  16. Find number of values of complex numbers omega satisfying the system o...

    Text Solution

    |

  17. For |z-1|=1, show that tan{[a r g(z-1)]//2}-(2i//z)=-idot

    Text Solution

    |

  18. If nge3and1,alpha(1),alpha(2),.......,alpha(n-1) are nth roots of unit...

    Text Solution

    |

  19. Let |z|=2and w=(z+1)/(z-1),where z ,w , in C (where C is the set of c...

    Text Solution

    |

  20. If z=x+i y is a complex number with x ,y in Qa n d|z|=1, then show th...

    Text Solution

    |