Home
Class 12
MATHS
If |a(i)|lt1lamda(i)ge0 for i=1,2,3,.......

If `|a_(i)|lt1lamda_(i)ge0` for `i=1,2,3,.......nandlamda_(1)+lamda_(2)+.......+lamda_(n)=1` then the value of `|lamda_(1)a_(1)+lamda_(2)a_(2)+.......+lamda_(n)a_(n)|` is :

A

Equal to 1

B

Less then 1

C

Greater then 1

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( | \lambda_1 a_1 + \lambda_2 a_2 + \ldots + \lambda_n a_n | \) under the given conditions. Let's break it down step by step. ### Step 1: Understand the given conditions We know that: 1. \( |a_i| < 1 \) for \( i = 1, 2, \ldots, n \) 2. \( \lambda_i \geq 0 \) for \( i = 1, 2, \ldots, n \) 3. \( \lambda_1 + \lambda_2 + \ldots + \lambda_n = 1 \) ### Step 2: Apply the triangle inequality Using the triangle inequality, we can express the modulus of the sum: \[ | \lambda_1 a_1 + \lambda_2 a_2 + \ldots + \lambda_n a_n | \leq | \lambda_1 a_1 | + | \lambda_2 a_2 | + \ldots + | \lambda_n a_n | \] ### Step 3: Simplify each term Since \( |a_i| < 1 \), we can write: \[ | \lambda_i a_i | = \lambda_i |a_i| < \lambda_i \] Thus, we can substitute this back into our inequality: \[ | \lambda_1 a_1 + \lambda_2 a_2 + \ldots + \lambda_n a_n | < \lambda_1 + \lambda_2 + \ldots + \lambda_n \] ### Step 4: Use the condition on \( \lambda \) From the problem statement, we know that: \[ \lambda_1 + \lambda_2 + \ldots + \lambda_n = 1 \] Therefore, we can conclude: \[ | \lambda_1 a_1 + \lambda_2 a_2 + \ldots + \lambda_n a_n | < 1 \] ### Step 5: Conclusion Since the sum \( | \lambda_1 a_1 + \lambda_2 a_2 + \ldots + \lambda_n a_n | \) is less than 1, we can conclude that: \[ | \lambda_1 a_1 + \lambda_2 a_2 + \ldots + \lambda_n a_n | < 1 \] ### Final Answer Thus, the value of \( | \lambda_1 a_1 + \lambda_2 a_2 + \ldots + \lambda_n a_n | \) is less than 1. ---
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise NUMRICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise JEE ARCHIVE|76 Videos
  • COMPLEX NUMBERS

    VMC MODULES ENGLISH|Exercise LEVEL - 1|90 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos
  • CONIC SECTIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|76 Videos

Similar Questions

Explore conceptually related problems

If a_(i)gt0 for i u=1, 2, 3, … ,n and a_(1)a_(2)…a_(n)=1, then the minimum value of (1+a_(1))(1+a_(2))…(1+a_(n)) , is

If a_(1) = 2 and a_(n) - a_(n-1) = 2n (n ge 2) , find the value of a_(1) + a_(2) + a_(3)+…+a_(20) .

A_(i)=(x-a_(i))/(|x-a_(i)|),i=1,2,...,n," and "a_(1)lta_(2)lta_(3)lt...lta_(n). If 1lemlen,minN, then the value of R=lim_(xtoa_(m)+) (A_(1)A_(2)...A_(n)) is

A_(i)=(x-a_(i))/(|x-a_(i)|),i=1,2,...,n," and "a_(1)lta_(2)lta_(3)lt...lta_(n). If 1lemlen,minN, then the value of L=lim_(xtoa_(m)) (A_(1)A_(2)...A_(n)) is (a) 2 (b) -1 (c) not exist (d) 1

If a_(n+1)=a_(n-1)+2a_(n) for n=2,3,4, . . . and a_(1)=1 and a_(2)=1 , then a_(5) =

If a_(1), a_(2), a_(3).... A_(n) in R^(+) and a_(1).a_(2).a_(3).... A_(n) = 1 , then minimum value of (1 + a_(1) + a_(1)^(2)) (a + a_(2) + a_(2)^(2)) (1 + a_(3) + a_(3)^(2))..... (1 + a_(n) + a_(n)^(2)) is equal to

Let N=(2+1)(2^(2)+1)(2^(4)+1)......(2^(32)+1)+1and n2^(lamda)"then the value of" lamdais

The matrix A={:[(lamda_(1)^(2),lamda_(1)lamda_(2),lamda_(1)lamda_(3)),(lamda_(2)lamda_(1),lamda_(2)^(2),lamda_(2)lamda_(3)),(lamda_(3)lamda_(1),lamda_(3)lamda_(2),lamda_(3)^(2))]:} is idempotent if lamda_(1)^(2)+lamda_(2)^(2)+lamda_(3)^(2)=k where lamda_(1),lamda_(2),lamda_(3) are non-zero real numbers. Then the value of (10+k)^(2) is . . .

If |(-12,0,lamda),(0,2,-1),(2,1,15)| = -360 , then the value of lamda is

Arrange the following wavelenghts (lamda) of given emission lines of H atoms in increasing order Choose the correct option (1) lamda_(4)ltlamda_(3)ltlamda_(2)ltlamda_(1) (2) lamda_(4)ltlamda_(2)ltlamda_(3)ltlamda_(1) (3) lamda_(1)ltlamda_(2)ltlamda_(3)ltlamda_(4) (4) lamda_(1)ltlamda_(3)ltlamda_(2)ltlamda_(4)

VMC MODULES ENGLISH-COMPLEX NUMBERS -LEVEL - 2
  1. If the roots of (z-1)^n=i(z+1)^n are plotted in ten Arg and plane, the...

    Text Solution

    |

  2. If for complex numbers z1 and z2 and |1-bar(z1)z2|^2-|z1-z2|^2=k(1-|z1...

    Text Solution

    |

  3. If |a(i)|lt1lamda(i)ge0 for i=1,2,3,.......nandlamda(1)+lamda(2)+........

    Text Solution

    |

  4. if (tanalpha-i(sin ""(alpha)/(2)+cos ""(alpha)/(2)))/(1+2 i sin ""(alp...

    Text Solution

    |

  5. If sqrt(1-c^(2))=nc-1andz=e^(itheta)," then "(c)/(2n)(1+nz)(1+(n)/(z))...

    Text Solution

    |

  6. If z=x+iy,x,y real , then |x|+|y|lek|z| where k is equal to :

    Text Solution

    |

  7. If arg(z)=-pi/4 then the value of arg((z^5+(bar(z))^5)/(1+z(bar(z))))^...

    Text Solution

    |

  8. If p/a + q/b + r/c=1 and a/p + b/q + c/r=0, then the value of p^(2)/a^...

    Text Solution

    |

  9. If cosA+cosB+cosC=0,sinA+sinB+sinC=0andA+B+C=180^(@) then the value of...

    Text Solution

    |

  10. Let |(barZ(1) - 2barz(2))//(2-z(1)barz(2))|= 1 and |z(2)| ne 1, where...

    Text Solution

    |

  11. Let z be a complex number having the argument theta ,0 < theta < pi/2,...

    Text Solution

    |

  12. If |z+2-i|=5 and maxium value of |3z +9-7i| is M, then the value of M ...

    Text Solution

    |

  13. If a, b are complex numbers and one of the roots of the equation x^(2)...

    Text Solution

    |

  14. Solve for z : z^2-(3-2i)z=(5i-5)dot

    Text Solution

    |

  15. Find number of values of complex numbers omega satisfying the system o...

    Text Solution

    |

  16. For |z-1|=1, show that tan{[a r g(z-1)]//2}-(2i//z)=-idot

    Text Solution

    |

  17. If nge3and1,alpha(1),alpha(2),.......,alpha(n-1) are nth roots of unit...

    Text Solution

    |

  18. Let |z|=2and w=(z+1)/(z-1),where z ,w , in C (where C is the set of c...

    Text Solution

    |

  19. If z=x+i y is a complex number with x ,y in Qa n d|z|=1, then show th...

    Text Solution

    |

  20. If z^3+(3+2i)z+(-1+i a)=0 has one real roots, then the value of a lies...

    Text Solution

    |